Health Care Databases for Research

Denise Boudreau, PhD, RPh
Group Health Research Institute (GHRI)
Outline

- Overview of data resources
 - Examples
- Strengths, weaknesses, and differences in data
- Approaches to choosing and working with databases
What is administrative data?

Administrative data refers to information collected primarily for administrative (not research) purposes. This type of data is collected by public and private organizations for the purposes of registration, transaction and record keeping, usually during the delivery of a service.
Example uses of administrative/automated/health care utilization databases

- Observational research studies (e.g., epidemiology, comparative effectiveness, health services)
- Public health surveillance
- Policy analyses/evaluations
- Economic evaluations
 - Cost-effectiveness
- Clinical studies
- Risk adjustment
- Health Effectiveness Data and Information Set (HEDIS) requirements
US public databases, examples:

- Healthcare Cost and Utilization Project (HCUP)
 - Nationwide Inpatient Sample (NIS)
 - State Ambulatory Surgery Databases (SASD)
 - State Emergency Department Databases (SEDD)
 - Kids' Inpatient Database (KID)

- Medicare and Medicare Part D

- SEER-Medicare Linked Databases

- Veterans Administrative Databases

US private databases, examples:

- MarketScan
- Pharmetrics
- United Health
- Healthcore (Wellpoint/Blue Cross/Blue Shield)
- Premier inpatient
- GE Healthcare
- HMO Research Network Health Plans

International databases, examples:

- Saskatchewan Health Services, Canada
- Clinical Practice Research Datalink – formerly General Practice Research Database (GPRD), UK
- The Health Improvement Network (THIN) database, UK
- PhARMO Record Linkage System, Netherlands
- IMS Oncology Analyzer, 14 countries
Basic contents of databases

- Diagnoses (ICD-9 or ICD-10, dates)
- Procedures (CPT/HCPCS, dates)
- Medication dispensings
- Demographics (age, sex, enrollment)
- Cost or charge of medical services
- Care setting (e.g., Outpatient, ER)
- Type of provider (e.g., primary care, specialty)
Supplemental data elements

- Laboratory results
- Electronic medical records
 - Vital signs (e.g., BP, weight, height)
 - Procedure results (e.g., EF for heart failure, images)
 - Medication order and indication for prescription
 - Flow sheets (PHQ-9, Medicare wellness survey)
- Disease registries (e.g., cancer, diabetes)
- Date and cause of death
- Census data
- Provider characteristics (e.g., gender, years practice)
- Patient characteristics (e.g., race, education, smoking status, family history, health behaviors)
Medication data

- Drug name, strength, date dispensed, quantity, form, route, days supply, provider, out pocket cost, NDC, therapeutic class, for each medication dispensed or claim submitted
 - Supplemental data may include directions for use, indication, intended duration, completion of therapy (e.g., chemotherapy)

- Record for each dispensing
Fig. 3 Typical causes for drug exposure misclassification in longitudinal claims database studies.

Sebastian Schneeweiss, Jerry Avorn

A review of uses of health care utilization databases for epidemiologic research on therapeutics

Journal of Clinical Epidemiology, Volume 58, Issue 4, 2005, 323 - 337

http://dx.doi.org/10.1016/j.jclinepi.2004.10.012
Data Capture

- Created for administrative and clinical purposes
 - Encounters with the health system (i.e., outpatient visits, inpatient stays, procedures, laboratory tests, medication dispensings, etc.) generate claims to the payer and medical record trail (electronic or paper) for documentation of encounter.
 - Hospital reimbursed base on diagnostic related groups (DRGs). ICD-9 codes mapped to DRGs with highest reimbursement.
 - Outpatient codes (ICD-9, CPT, HCPCS) assigned by provider or office staff for reimbursement. Reimbursement often based on intensity of services provided during visit.

- Data across various sources can then be linked
 - An integrated picture of the patient’s health and healthcare can emerge.
HMO Research Network

- National consortium of research centers that work in close partnership with integrated health systems

- Mission: To facilitate and promote the unique scientific research capabilities of its member organizations
 - Fostering collaborative studies
 - Sharing methodologies & best practices
 - Disseminating & translating research findings

- Combined population of ~15 million individuals

- Geographically & socio-culturally diverse
 - 800,000 African American enrollees
 - Henry Ford Health System: 37% African American
 - KP Southern California: 37% Latino
HMORN Participating Sites

- Kaiser Permanente Colorado
 - Denver, CO
- HealthPartners
 - Minneapolis, MN
- Essentia Health
 - Duluth, MN
- Kaiser Permanente Northwest
 - Portland, OR
- Kaiser Permanente Northern CA
 - Oakland, CA
- Palo Alto Medical Foundation
 - Palo Alto, CA
- Kaiser Permanente Southern CA
 - Pasadena, CA
- Kaiser Permanente Hawaii
 - Honolulu, HI
- Scott and White Health Plan
 - Temple, TX
- Marshfield Clinic
 - Marshfield, WI
- Geisinger Health System
 - Danville, PA
- Kaiser Permanente
 - Mid-Atlantic
 - Rockville, MD
- Kaiser Permanente
 - Georgia
 - Atlanta, GA
- Fallon Community Health Plan
 - Worcester, MA
- Harvard Pilgrim Health Care
 - Boston, MA
- Maccabi Healthcare Services
 - Tel Aviv, Israel
Interconnected Data Resources at GHRI and other HMORN partners
Virtual Data Warehouse (VDW)

VDW is populated by automated data from the following sources:

- Tumor registry
- Enrollment
- Demographics
- Pharmacy
- Utilization – includes diagnoses & procedures
- Some vitals such as BMI & blood pressure
- Geocoding
- Laboratory
- Chemotherapy
- Radiology
- Pathology
Example of longitudinal data within HMORN
Mini-Sentinel Partner Organizations

Lead – HPHC Institute

Data and scientific partners

Scientific partners
Mini-Sentinel’s Evolving Common Data Model

- **Administrative data**
 - Enrollment
 - Demographics
 - Outpatient pharmacy dispensing
 - Utilization (encounters, diagnoses, procedures)

- **EHR data**
 - Height, weight, blood pressure, temperature
 - Laboratory test results (selected tests)

- **Registries**
 - Immunization
 - Mortality (death and cause of death)
The Mini-Sentinel Distributed Database

- Populations with well-defined person-time for which medically-attended events are known
- 126 million individuals*
 - 345 million person-years of observation time (2000-2011)
 - 44 million individuals currently enrolled, accumulating new data
 - 27 million individuals have over 3 years of data

*As of 12 December 2011. The potential for double-counting exists if individuals moved between data partner health plans.
The Mini-Sentinel Distributed Database

- 3 billion dispensings
 - Accumulating 37 million dispensings per month
- 2.4 billion unique encounters
 - 40 million acute inpatient stays
 - Accumulating 41 million encounters per month including over 400,000 hospitalizations
- 13 million people with ≥1 laboratory test result

As of 12 December 2011
Mini-Sentinel Distributed Analysis

1- User creates and submits query (a computer program)
2- Data partners retrieve query
3- Data partners review and run query against their local data
4- Data partners review results
5- Data partners return results via secure network
6- Results are aggregated
General Strengths of Health Care Utilization Data

- Valuable source of data for relatively quick and less costly studies
- Most contain large samples and are population based
- Ability to study “real world” effectiveness, safety, and utilization
- Most contain continuous services as opposed to interval assessments
 - Continuous assessment of exposures and outcomes
- Some have near complete data on:
 - Outpatient prescription medication dispensings
 - Outpatient and inpatient diagnoses and procedures
- Not subject to recall bias or non-response
- Denominator!
- Technology has advanced capabilities and ease of accessing and working with the data
General Limitations

- Data is collected for care and reimbursement – not research
 - Requires encounter w/ health care system (not under control of investigator)

- Generalizability to other populations and settings
 - Commercially insured population, Medicaid, or elderly (i.e., Medicare)
 - Integrated group practice vs fee for service setting

- Often missing important data on confounders such as SES, diet, and behaviors

- Potential misclassification of exposure, outcome, and covariates
 - Often missing inpatient medication use and OTC medicine use
 - Missing data on medications or procedures not covered or when patients seek treatment out of the contract settings
 - Uncertainty in the validity of diagnosis data (e.g., rule out codes)
 - Only captures illnesses severe enough to come to medical attention
 - Incident date of disease may be difficult to determine

- Some databases lack info on mortality

- Turnover rate in most health plans is 20-30% a year
 - Different by age, employment, illness, etc.
Limitations (cont.)

- Often cannot contact study subjects for further data collection or interventions
- Few have or allow access to medical charts
- Supplemental data mentioned earlier is not always available
- Missing data fields
 - E.g., smoking status, weight, height, race, days supply of medication dispensing, laboratory and procedure results
- Data is influenced by formularies, policies, practice patterns, etc.
- Breaks or changes in data collection
 - ICD-9 to ICD-10 codes
 - Introduction of EMRs
 - Software
- Inability to track the same individual coming in and out of the system
Selecting a database

- Clearly defined population
 - Adequate sample size
 - Coverage of population of interest (e.g., pediatrics, elderly)
 - Generalizable

- Capture of required study variables
 - % missing, multiple records, etc.
 - Accessibility
 - Structured field vs free text, scanned pdf, etc.
 - Level of detail
 - E.g., can you differentiate screening mammograms from diagnostic, cost vs charges of care, dose of chemotherapy, etc.

- Continuous and consistent capture

- Individual or aggregate data
 - Limited or de-identified
Selecting a database (cont.)

- Cost and feasibility of obtaining data.
 - E.g., private sources may require collaboration with an internal investigator or substantial amount of money to buy data
 - Human subject hurdles

- Existing documentation on completeness and quality of data and/or opportunities to validate data.

- Availability of published studies using the data
 - Representativeness of the population and setting
 - Trends in prescribing, encounters, diagnoses, etc.
Selecting a database (cont.)

- Available follow-up
 - Date all needed data first became available
 - E.g. Height and weight not available electronically until adoption of EMR
 - Frequency of data collection and uploading
 - E.g. lag of 2 years for death data

- Need to go to multiple data sources
 - E.g., link to National Death Index
 - Validated and reliable linkage algorithms
Extra tips

- Consider a feasibility study to start if new area or new data and unsure of ability to answer research question with the available data

- Collaborate with someone who is experienced working with the data source
Conclusions

- Enormous growth in the use of large healthcare databases in North America and Europe
 - Focus on CER is motivating improvements and expansion of current data and infrastructures to support data collection

- Data contents, quality, and integrity differ among databases
 - Know your data or add an expert to your team

- Carefully frame research questions (i.e., avoid data mining)

- All same limitations of observational studies apply
 - Confounding, bias, missing data, etc.
 - Exciting new advanced statistical techniques

- Follow good research practices and be good stewards of the data
Clinical Research Studies

Adapted from Hulley, Cummings, Browner, et al. Designing Clinical Research
Additional References

- GRACE’s Good Research for CER: www.graceprinciples.org