Gaps and Opportunities: Methodologic challenges in post-market safety surveillance.

Susan Gruber
Reagan-Udall Foundation for the FDA

First Seattle Symposium on Healthcare Data Analytics, Seattle, Washington, September, 2014
Overview

Part I: Why Observational Studies are Here to Stay, and Why We Need to Get Them Right

Part II: Issues in Post-Market Safety Surveillance using Observational Data

Part III: What IMEDS Can Do for You

Innovation in Medical Evidence Development and Surveillance
a program of the Reagan-Udall Foundation for the FDA
PART I

Why Observational Studies are Here to Stay, and Why We Need to Get Them Right
Pre-approval studies

• Typically underpowered for rare adverse events (AE)

• May lack sufficient follow-up time for detecting AEs with long induction or latent periods

• Findings may not generalize to post-market exposed population
 – higher number of co-morbidities
 – off-label use
And Yet...

Public demands access to new drugs ASAP

Tension

- Thorough Risk Assessment
- Reduce Delay in getting much needed drugs to physicians and patients
Risk-Benefit approach to regulatory decision-making

Methodologic Challenges

- Incomplete information
- Reasoning in the face of uncertainty
- Risk – Benefit tradeoff (one size does not fit all)

Risk-Benefit trade-off

• Opportunity for periodic re-evaluation
 – supported by ongoing accumulation of evidence
 – relative to new alternatives

• Information can inspire different types of regulatory action
Range of post-market regulatory actions

- Additional post-market requirement
- Safety warning
- Black box label
- Withdrawal
 - either failure or success of the system
 - success of the system
The Bottom Line

1. Pre-approval studies cannot provide all the answers.

2. Ethical considerations aside, not enough time, money, or manpower to run RCT for every post-market question.

3. Thus, observational studies (OS) may be the best, or only, source of knowledge.

Challenge #1: How can we make best use of observational data to improve post-market safety monitoring?
PART II

Post-Market Safety Surveillance using Observational Data
What, exactly, do we want to know?

• **Signal Detection:** For all exposures and outcomes of interest, identify exposure–outcome pairs where exposure increases risk for the outcome (*classification task*)

• **Signal Refinement:** Estimate the causal effect of a pre-specified exposure on a pre-specified outcome (*estimation task*)
Reality makes things complicated

• The risk profile may not be constant over time.
• Relevant comparison group depends on scientific question of interest
 – relative to active comparator (Drug A vs. Drug B)
 • clinical decision-making
 • risk/benefit analysis
 – relative to no exposure
 • biological pathway discovery
 • joint replacement, device implantation
Example: Does exposure to Drug A increase risk for Outcome O?

\[
\begin{align*}
\text{RR}_{AB, \text{6months}} &= 2/3 \implies \text{No} \\
\text{RR}_{AC, \text{6months}} &= 2 \implies \text{Yes}
\end{align*}
\]

If A doubles the risk, B triples the risk, and C is unrelated to O, both RR estimates are correct.

- This phenomenon is not due to an inherent flaw in observational studies
 - It is independent of the quality of the data
 - It is not a failure of the analytical approach
 - We’d see the same thing in an ideal RCT

- Ask a precise question

- Understand which parameter corresponds to the scientific question you care about
Challenge #2: What are the right questions to ask when monitoring drug safety?

- Estimate an absolute risk?
- Estimate risk relative to available treatment options?
- Is risk above a certain threshold? (Yes or No)
- Over what time period?
- For what set of outcomes?
Statistical analysis of observational electronic healthcare data

• False positives are a regulatory concern
 – Further investigation wastes scarce resources
 – Regulatory action could unnecessarily reduce exposure
 – Publicity might reduce adherence

• Bias is a major issue
 – Lack of randomization
 – Unmeasured confounders
 – Exposure and outcome misclassification
 – Missing data
 – Censored data
Challenge #3: How to deal with bias in the analysis of observational electronic healthcare data?
Options for addressing bias in causal effect estimation

• **Approach 1: Unbiased estimation of causal effect**
 – Handle confounding in the statistical analysis
 • outcome regression modeling, propensity score matching, inverse probability weighting
 • instrumental variables approach
 • self-controlled design

• **Approach 2: Quantify the bias**
 – External domain knowledge
 • is it correct?
 • does it generalize to target population?
 – How large would it have to be to change qualitative conclusion?
Options for addressing bias in causal effect estimation

• Approach 3: Attack bias at its source
 – Outcome misclassification
 • chart review
 • develop algorithms to better distinguish cases/non-cases
 – Exposure misclassification
 • patient-reported data
 – adherence patterns
 – capture OTC drug use
 – Improve EHR systems

• Approach 4: Change the question
 – Estimate bounds on effect size
 – Aim to detect changes in risk patterns over time (signal detection)
Challenge #4: How to interpret heterogeneous results from multiple studies?

Potential sources of heterogeneity include

- Study inclusion/exclusion criteria
- Coding practices, formularies
- Different sources of bias (strength, direction)
- Violation of assumptions underlying the analytical approach
- Incorrectly comparing “apples” and “oranges” (different statistical estimands)
Challenge #5: Characterize Uses and Limitations of the Data

Can we characterize scenarios where we are confident that the results provide reliable evidence to inform regulatory action?

Scenario = (question, exposure, outcome, data, study design)
PART III

What can IMEDS do for you?
What is IMEDS?
http://imeds.reaganudall.org/

• A program within the Reagan-Udall Foundation for the FDA
• Three components: Education, Evaluation, Methods
• IMEDS-Methods
 Mission is to facilitate methods research aimed at monitoring safety of marketed medical products.
IMEDS-Methods

Challenges

#1: How can we make best use of observational data to improve post-market safety monitoring?

#2: What are the right questions to ask when monitoring drug safety?

#3: How to deal with bias in the analysis of observational electronic healthcare data?

#4: How to interpret heterogeneous results from multiple studies?

#5: Characterize Uses and Limitations of the Data

IMEDS sponsors research to address these challenges (and more)
IMEDS Research Laboratory

• **Computing Platform**
 - Secure computing platform housing research tools and healthcare datasets
 - Amazon.com's Elastic Cloud Computing (EC2) technology
 - virtual computers based on predefined configuration
 - quickly scale capacity to reflect changes in computing requirements

• **Data**
 - De-identified pursuant to HIPAA standards
 - Formatted to conform to OMOP and Mini-Sentinel Common Data Model
 - GE Centricity, Truven MarketScan *Commercial Claims and Encounters*, *Multi-State Medicaid*, *Medicare Supplemental Beneficiaries*, *Lab Supplemental*
 - In discussion with PatientsLikeMe to bring de-identified patient-reported data into the lab

• **Investigator groups from FDA, NIH, industry, academia**

IMEDS Research Laboratory

Examples of Methodologic Research carried out in the IMEDS Lab
http://imeds.reaganudall.org/LabUsers

• **OHDSI Investigator Group**: Develop software and infrastructure to support post-marketing evidence generation by creating summary statistics for associations between all combinations of medical products and outcomes.

• **GlaxoSmithKline R&D**: A methodological comparison across data sources, common data model approaches, and epidemiological designs. This research will evaluate the performance of Mini-Sentinel (MS) and Observational Medical Outcomes Partnership (OMOP) analytical tools.

• **NIH Investigators**: Analyzing and measuring the comprehensiveness of Electronic Health Record (EHR) in a given Integrated Data Repository.

• **RAND Corporation**: Discover discriminative sequential treatment patterns between patients with better than expected and worse than expected outcomes at given health status at incident diagnosis with a chronic condition.

• **UCLA David Geffen School of Medicine, Department of Biomathematics**: Integrate Bayesian methods and high performance computing to achieve better identification of drug risk.
What IMEDS-Methods can do for you

• Provide access to the IMEDS Research Lab data + software + parallel computing platform
• Supports internally and externally funded projects
• IMEDS Community
 • Discussion group
 • Webinars
• Upcoming
 • Open Comment Period on 2015 DRAFT Research Agenda (late Fall, 2014)
 • IMEDS Competition for identifying the occurrence of health outcomes from claims data
Acknowledgements

Alec Walker
Emily Welebob
Mark Khayter
Christian Reich
Patrick Ryan
David Madigan
Mark van der Laan
Jamie Robins
Bruce Fireman
Sebastian Schneeweiss
Jennifer Nelson
Richard Platt
Jesse Berlin

Briggs Morrison
Alan Brookhart
Jessica Franklin
Miguel Hernán
Eric Tchetgen Tchetgen
IMEDS Community
IMEDS Scientific Advisory Committee
IMEDS-FDA-MiniSentinel Joint Working Group