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Bringing	Variety	of	ML	Approaches	to	
Bear	on	Adverse	Drug	Events	

•  Regularized	Regression	
•  Random	Forests	
•  Support	Vector	Machines	
•  Graphical	Model	Learning	(Bayes	nets,	Markov	
nets,	dynamic	Bayes	nets,	conDnuous-Dme	
models)	

•  Deep	Learning	(deep	neural	nets,	restricted	
Boltzman	machines)	

•  RelaDonal	Learning	



Data:	EHR	or	Claims	Data	in	a	
RelaDonal	Data	Warehouse	

Patient	ID Gender Birthdate

P1 M 3/22/1963

Patient	ID Date Physician Symptoms Diagnosis

P1 1/1/2001 Smith palpitations hypoglycemic

P1 2/1/2001 Jones fever,	aches influenza

Patient	ID Date Lab	Test Result

P1 1/1/2001 blood	glucose 42

P1 1/9/2001 blood	glucose 45

Patient	ID Date Observation Result

P1 1/1/2001 Height 5'11

P2 1/9/2001 BMI 34.5

Patient	ID

Date	

Prescribed Date	Filled Physician Medication Dose Duration

P1 5/17/1998 5/18/1998 Jones Prilosec 10mg 3	months



Alternative View of Patient Data: 
Irregularly-Sampled Time Series 



But	Most	ML	Algorithms	Expect:	

•  Single	Table	(Spreadsheet),	or	
•  Regularly-Sampled	Time	Series	

•  Another	Challenge:	ML	Algorithms	aim	for	
accurate	predicDon,	not	causal	discovery	



High-Throughput ML (Kleiman, Bennett, et al., 2016) 
Predicting Every ICD Diagnosis Code at the Press of a Button 



Spectrum	of	Approaches	to	Causal	
Discovery	from	ObservaDonal	Data	

All	the	relevant	
variables	known,	
but	not	structure	

Hypothesized	cause	
and	effect	are	only	
variables	known	

Robbins	et	al.,	
Pearl	et	al.,	

Granger	graphical	
models,	DBNs,	
PC	Algorithm.	

DisproporDonality,
Self-controlled	

case	series	(SCCS),	
etc..	
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Extending SCCS to Numerical Response (Kuang et al.) 
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A Critical Intuition: Underlying Baseline 
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Baseline: Blood sugar level under no influence of any drugs. 
	



Fixed Effect Model 
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Fixed Effect Model (Frees, 2004): 
	

yij | xij 
 

= αi + β�xij + ϵij, 
 

ϵij � N(0,σ2). 
 

dimβ =# drugs 
	



Time-Varying Baseline 
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Baseline Regularization (BR)
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More Ground Truth Available for Glucose Lowering 
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Figure: Left: Precision at K among the top-forty drugs generated by the four 
	models; Right: Partial AUCs on the top-forty drugs generated by the four models. 
	

Sample size: 219306. 
	Number of drug candidates: 2980. 
	



Recovery of Known Glucose Lowering Agents 
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Real Situation: Know the Drug but 
Don’t Know the Effect of Interest 
 
•  Response or candidate conditions must be 

pre-specified (though might be many) 
 
•  No consideration of context – ADE might 

only arise when patient 
–  is taking another drug (drug interaction) 
–  has specific properties, such as low weight or 

specific genetic variation 



Most Current Approaches 

Warfarin 

Cox2 inhibitor 

ACE inhibitor 

Heart Attack 

Angioedema 

Bleeding 

… … 



What We Would Like: 

Warfarin 

Cox2 inhibitor 

ACE inhibitor 

… 

EMR 

Cox2 inhibitor(P,D) hypertension(P) 

older(P,55) , vioxx(D) 



Reverse Machine Learning 

•  We already know who is on drug, and we want to 
find the condition it causes 

•  But we don�t know which condition 
–  Might not even have predicate for condition in our 

vocabulary 
–  Assume only that we can build condition definition 

from vocabulary as a clause body 
 

•  Treat drug use as target concept, and learn to 
predict that based on events after drug initiation 



Use Rule Learning (ILP) 

•  If antibiotics(P) and bleeding(P) then 
warfarin(P) 

 
•  If age_at_least(P,55) and hypertension(P) 

then vioxx(P) 



Using ML to Find Subgroups of 
Patients on Drug Based on 
Common Events Afterward 

•  Rule consequent specifies drug and rule 
antecedent specifies ADE 

•  Reverse of what we normally expect 
•  Richer condition definitions 
•  Can identify events that don’t 

correspond neatly to single condition 
•  Can identify drug interactions 



SCCS-Like Scoring of Models 

•  Search for events that occur more 
frequently after drug initiation than before 

•  Example scoring function: 
                  P(tc > td | c,d) 
•  Could normalize, dividing by: 
      P(tC > td | C,d) P(tc > tD | c,D) 



															CASEAVer	–	CASEBefore		
	
where	now	a	CASE	is	person	on	drug	
(rather	than	person	experiencing	event)	
	
		

Temporal	filtering	and	Scoring	Func6ons	
	 Cox2	

Inhibitor	



24	

Results	

•  Using	only	diagnoses	à	Accuracy	=	0.63	

•  Using	diagnoses,	medicaDons,	labs	à		

	Accuracy	=	0.78	



Reverse	Learning	for	Generics	

•  -	Can	we	detect	who	on	Generic	GabapenDn?	
•  -	Each	PaDent	is	two	examples	

•  -	Confounders:	
– Most	paDents	were	switched	to	generic	2005	

– Marshfield	policy	changes	also	in	2005	

– Made	unrelated	changes	to	reporDng	system	



(CASEAVer	–	CTRLAVer)	-	(CASEBefore	–	CTRLBefore)	
	
where	Censor	Date	is	2005	(Dme	CASEs	were	
switched	from	brand	to	generic)			

Recent	Work	on	Generic	vs.	Brand	Comparison	
	 GabapenDn	



Biggest	Challenges	Now	

•  Temporal	confounding:	adding	controls	(people	
not	on	drug)	removed	obvious	ones	
–  PrescripDon	transmided	electronically	
–  ICD	code	“other	non-operaDve	exam”	

•  But	what	about	newer	results	such	as	
hyperlipidemia,	lidoderm,	or	levoquin?	

•  EvaluaDon:	Few	known	cases	of	generic	vs.	brand	
differences	for	rediscovery	evaluaDons	

	



Cases	and	controls	

•  Controls	
AVer	

•  Cases	
Before	

• Control	
AVer	•  Cases	

AVer	



Scoring:	InformaDve	Rule	
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Scoring:	Less	InformaDve	

New	

Case	
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Scoring:	InformaDve?	

New	

Case	

Neutral	

Old	
Case	



Future	Work	

•  Further	addressing	confounding,	temporal	and	
otherwise	

•  One	approach:	IncorporaDng	learned	rules	as	
nodes	in	a	graphical	model	taking	Dme	into	
account	

•  Finding	new	ways	to	evaluate,	such	as	text	
mining	to	associate	with	recent	findings	in	
literature	
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MoDvaDon	



Con6nuous-6me,	discrete-state,	with	piecewise-constant	transi6on	rates	
	Point	process:	piecewise-conDnuous	condiDonal	intensity	model	(PCIM)	
	 	(Gunawardana	et	al.,	NIPS	2011)	

	ConDnuous-Dme	Bayesian	networks	(CTBNs)		(Nodelman	et	al,	UAI	2002)	
	

Continuous-time Graphical Models 

Model	of	Events	
Point	Processes	

Model	of	Persistent	State	
CTBNs	



Example CTBN or Point Process Structure 

1)	Simula6on	 2)	Electronic	Health	Records		

Goal:	recover	network-dependent	event	rates	–	measured	by	test	set	log	likelihood	



Conclusion	

•  ML	has	potenDal	to	bring	new	approaches	to	
ADE	DetecDon	task	

•  Can	get	beyond	“candidate	ADE”	approach,	
but	challenges	remain	
– Adjust	for	mulDple	comparisons,	since	we	
consider	so	many	candidates	

– Temporal	confounding	with	SCCS-like	approaches	
can	be	exacerbated	

– Can	we	reduce	this	with	ideas	from	graphical	
model-based	approaches?	


