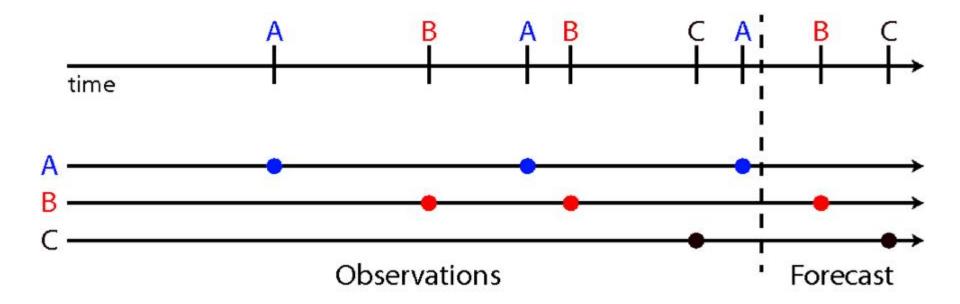
Machine Learning for Adverse Drug Event Detection

David Page

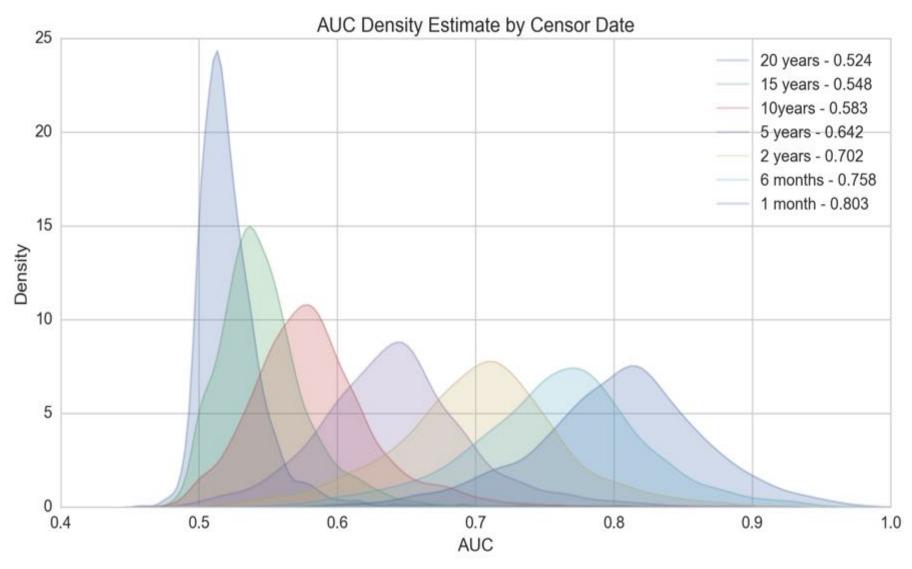

Dept. of Biostatistics & Medical Informatics University of Wisconsin-Madison Bringing Variety of ML Approaches to Bear on Adverse Drug Events

- Regularized Regression
- Random Forests
- Support Vector Machines
- Graphical Model Learning (Bayes nets, Markov nets, dynamic Bayes nets, continuous-time models)
- Deep Learning (deep neural nets, restricted Boltzman machines)
- Relational Learning

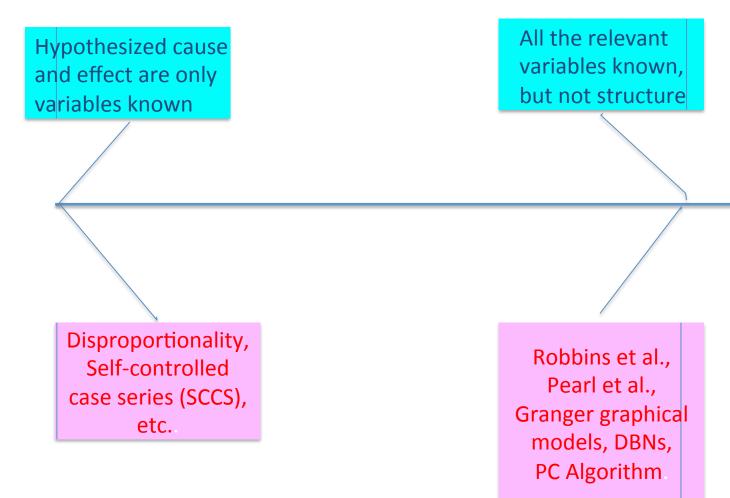
Data: EHR or Claims Data in a Relational Data Warehouse

hic	5						
mograpi.	Patient ID	Gender	Birthdate				
Demographic	P1	М	3/22/1963				
						1	
	Patient ID	Date	Physician	Symptoms	Diagnosis		
oses	P1	1/1/2001	Smith	palpitations	hypoglycemic		
Diagnoses	P1	2/1/2001	Jones	fever, aches	influenza		
	Patient ID	Date	Lab Test	Result			
ults	P1	1/1/2001	blood glucose	42			
Lab Results	P1	1/9/2001	blood glucose	45			
Lo							
	Patient ID	Date	Observation	Result			
	P1	1/1/2001	Height	5'11			
Vitals	P2	1/9/2001	BMI	34.5			
- 6		Date					
dications	Patient ID	Prescribed	Date Filled	Physician	Medication	Dose	Duration
Medications	P1	5/17/1998	5/18/1998	Jones	Prilosec	10mg	3 months

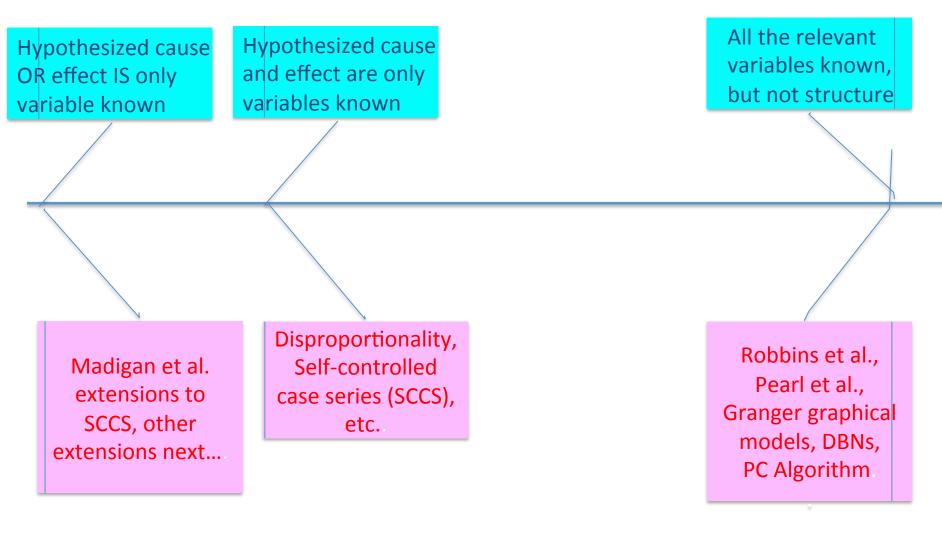
Alternative View of Patient Data: Irregularly-Sampled Time Series

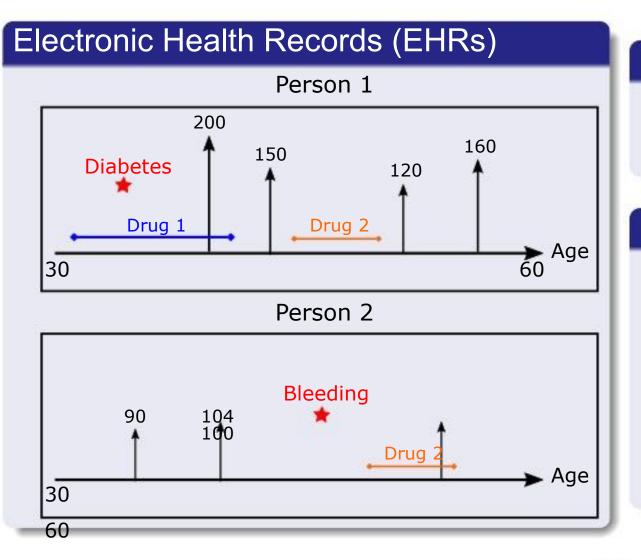

But Most ML Algorithms Expect:

- Single Table (Spreadsheet), or
- Regularly-Sampled Time Series


• Another Challenge: ML Algorithms aim for accurate prediction, not causal discovery

High-Throughput ML (Kleiman, Bennett, et al., 2016)

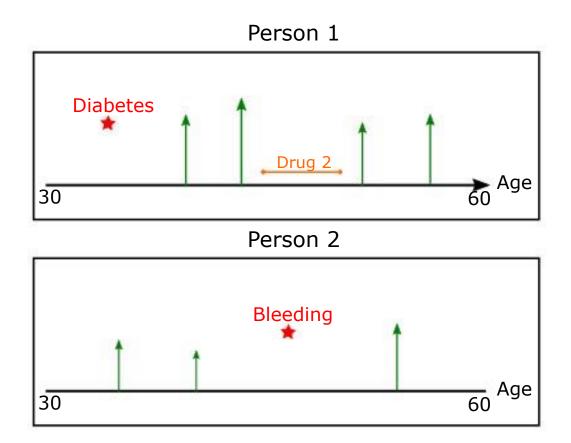

Predicting Every ICD Diagnosis Code at the Press of a Button


Spectrum of Approaches to Causal Discovery from Observational Data

Spectrum of Approaches to Causal Discovery from Observational Data

Extending SCCS to Numerical Response (Kuang et al.)

Properties


- Longitudinal
- Observational

Applications

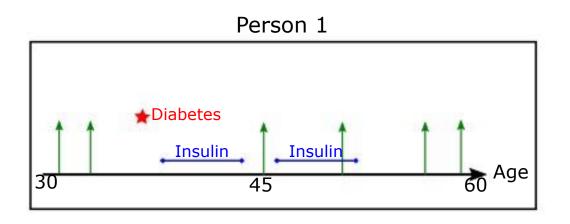
- Adverse Drug Reaction (ADR) discovery
- Computational Drug Repositioning (CDR)

(口)(四)(三)(三)(三)(四)

A Critical Intuition: Underlying Baseline

1

200


(3)

4 🗆 E

4.07.2

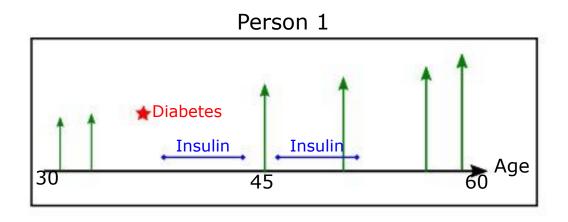
Baseline: Blood sugar level under no influence of any drugs.

Fixed Effect Model

• Fixed Effect Model (Frees, 2004):

$$y_{ij} | x_{ij} = \alpha_i + \beta^T x_{ij} + \epsilon_{ij}, \quad \epsilon_{ij} \sim N(0,\sigma_2).$$

4 🗆 k

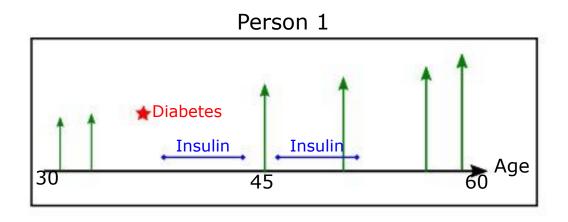

1

34 1

200

• dim β =# drugs

Time-Varying Baseline



 Time-Varying Baseline, add regularization to minimize change in proximal, consecutive t_{ij} values:

y_{ij} | x_{ij} =
$$\mathbf{t}_{ij}$$
 + $\boldsymbol{\beta}^{\top} \mathbf{x}_{ij}$ + $\boldsymbol{\epsilon}_{ij}$, $\boldsymbol{\epsilon}_{ij}$ ~ N(0, σ 2).

4 🗆 k

Time-Varying Baseline

 Time-Varying Baseline: add regularization to minimize change in proximal, consecutive t_{ij} values:

$$\begin{aligned} \mathbf{y}_{ij} \mid \mathbf{x}_{ij} &= \mathbf{t}_{ij} + \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_{ij} + \boldsymbol{\epsilon}_{ij}, \quad \boldsymbol{\epsilon}_{ij} \sim \mathsf{N}(0, \sigma 2). \\ \arg\min_{\boldsymbol{\beta}, \boldsymbol{t}} \frac{1}{2} \left\| \boldsymbol{y} - \begin{bmatrix} \boldsymbol{X} & \boldsymbol{I} \end{bmatrix} \begin{bmatrix} \boldsymbol{\beta} \\ \boldsymbol{t} \end{bmatrix} \right\|_{2}^{2} \\ &+ \lambda_{1} \left\| \boldsymbol{\beta} \right\|_{1} + \lambda_{2} \sum_{i=1}^{N} \sum_{\tau_{i(j+1)} - \tau_{ij} < \delta} \left| t_{i(j+1)} - t_{ij} \right| \end{aligned}$$

3

200

More Ground Truth Available for Glucose Lowering

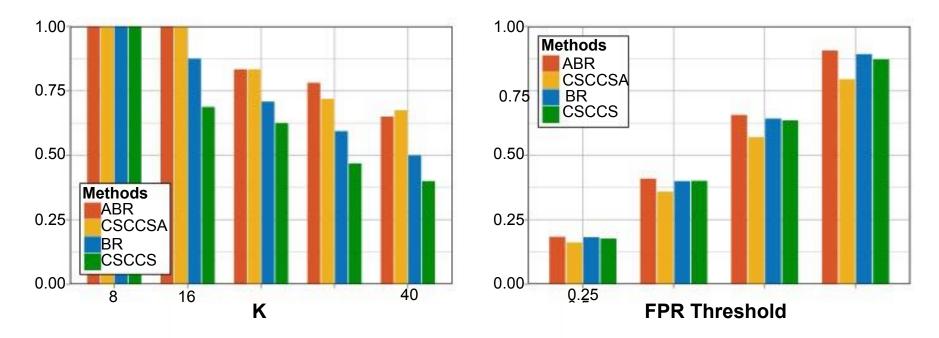
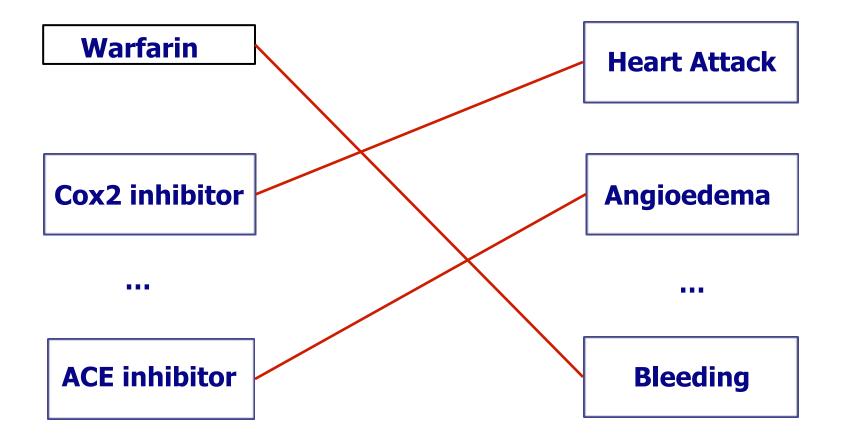


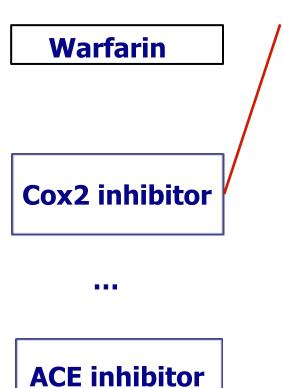
Figure: Left: Precision at K among the top-forty drugs generated by the four models; Right: Partial AUCs on the top-forty drugs generated by the four models.

4 🗆 k

- Sample size: 219306.
- Number of drug candidates: 2980.


Recovery of Known Glucose Lowering Agents

INDX	CODE	DRUG NAME	SCORE	COUNT	INDX	CODE	DRUG NAME	SCORE	COUNT
1	4485	HUMALOG	-11.786	124	1	4802	INSULIN	47	635
2	7470	PIOGLITAZONE HCL	-10.220	3075	2	8316	REZULIN	50	120
3	8437	ROSIGLITAZONE MALEATE	-9.731	1019	3	824	AVANDIA	59	449
4	4837	INSULN ASP PRT/INSULIN ASPART	-9.658	258	4	416	AMARYL	65	503
5	6382	NEEDLES INSULIN DISPOSABLE	-9.464	2827	5	5226	LANTUS	66	33
6	4171	GLUCOTROL XL	-8.117	2853	6	5789	METFORMIN HYDROCHLORIDE	75	10
7	4106	GLIMEPIRIDE	-7.940	3384	7	4485	HUMALOG	81	63
8	160	ACTOS	-7.721	1125	8	4132	GLUCOPHAGE	86	1813
9	824	AVANDIA	-6.802	1239	9	4811	INSULIN NPH	88	19
10	9152	SYRING W-NDL DISP INSUL 0.5ML	-6.623	4186	10	144	ACTIGALL	90	34
11	4132	GLUCOPHAGE	-6.322	6736	11	1389	CAL	90	45
12	4184	GLYBURIDE	-6.021	8879	12	4171	GLUCOTROL XL	90	701
13	4170	GLUCOTROL	-5.721	1259	13	9155	SYRNG W-NDL DISP INSUL 0.333ML	95	29
14	4208	GLYNASE	-5.670	591	14	4116	GLUCAGON	97	121
15	416	AMARYL	-5.599	2240	15	6652	NOVOLOG	98	51
16	4107	GLIPIZIDE	-5.563	9993	16	160	ACTOS	106	480
17	844	AXID	-4.682	189	17	6646	NOVOFINE 31	106	31
18	2830	DILTIAZEM	-4.297	1021	18	4813	INSULIN NPL/INSULIN LISPRO	108	118
19	4806	INSULIN GLARGINE HUM.REC.ANLOG	-4.175	4213	19	8437	ROSIGLITAZONE MALEATE	109	332
20	5787	METFORMIN HCL	-4.147	19584	20	4170	GLUCOTROL	113	641
21	2824	DILAUDID	-4.076	39	21	9889	URSODIOL	113	123
22	5786	METFORMIN	-3.890	3838	22	5052	KAY CIEL	114	23
23	7731	PRAVACHOL	-3.532	1700	23	4118	GLUCAGON HUMAN RECOMBINANT	115	227
24	1760	CELEXA	-3.517	1473	24	2521	DARVOCET-N	116	11
25	4497	HUM INSULIN NPH/REG INSULIN HM	-3.501	1829	25	7470	PIOGLITAZONE HCL	121	705
26	9889	URSODIOL	-3.132	376	26	5786	METFORMIN	125	2149
27	4813	INSULIN NPL/INSULIN LISPRO	-2.972	623	27	10366	ZINC SULFATE	130	34
28	4133	GLUCOPHAGE XR	-2.845	765	28	4500	HUMULIN	135	33
29	6445	NEURONTIN	-2.615	1418	29	4172	GLUCOVANCE	136	115
30	6656	NPH HUMAN INSULIN ISOPHANE	-2.500	2874	30	7471	PIOGLITAZONE HCL/METFORMIN HCL	136	16
31	9379	THIAMINE HCL	-2.383	341	31	6382	NEEDLES INSULIN DISPOSABLE	137	649
32	1636	CARDURA	-2.198	1079	32	4184	GLYBURIDE	144	1354
33	1218	BLOOD SUGAR DIAGNOSTIC DRUM	-2.073	2593	33	4208	GLYNASE	145	115
34	8025	PROZAC	-2.037	1525	34	4210	GLYSET	148	7
35	8316	REZULIN	-1.895	444	35	4163	GLUCOSE	159	1778
36	9136	SYRINGE & NEEDLE INSULIN 1 ML	-1.885	3542	36	5977	MINIPRESS	163	19
37	4802	INSULIN	-1.812	1526	37	7946	PROPANTHELINE	163	6
38	7674	POTASSIUM CHLORIDE	-1.779	9842	38	1602	CARBOCAINE	182	63
39	4804	INSULIN ASPART	-1.752	2476	39	1305	BUDEPRION SR	185	9
40	1200	BLOOD-GLUCOSE METER	-1.719	5289	40	6657	NPH INSULIN	185	43
_									


Real Situation: Know the Drug but Don't Know the Effect of Interest

- Response or candidate *conditions* must be pre-specified (though might be many)
- No consideration of *context* ADE might only arise when patient
 - is taking another drug (drug interaction)
 - has specific properties, such as low weight or specific genetic variation

Most Current Approaches

What We Would Like:

Cox2 inhibitor(P,D) → hypertension(P) older(P,55), vioxx(D)

PatientID	Gender	Birthdate
P1	М	3/22/63

PatientID	Date	Physician	Symptoms	Diagnosis
	1/1/01 2/1/03		palpitations fever, aches	hypoglycemic influenza

PatientID	Date	Lab Test	Result	PatientID	SNP1	SNP2	 SNP 1M
		blood glucose blood glucose	42 45	P1 P2	AA AB	AB BB	BB AA

PatientID	Date Prescribed	Date Filled	Physician	Medication	Dose	Duration
P1	5/17/98	5/18/98	Jones	prilosec	10mg	3 months

Reverse Machine Learning

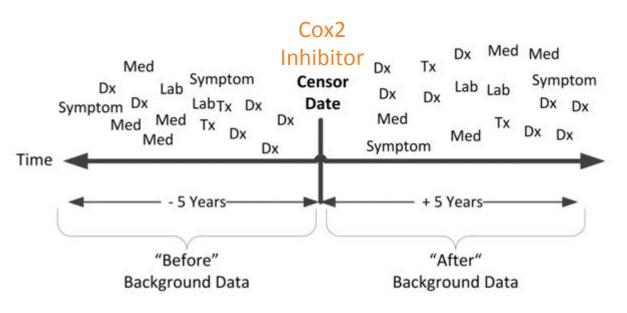
- We already know who is on drug, and we want to find the condition it causes
- But we don't know which condition
 - Might not even have predicate for condition in our vocabulary
 - Assume only that we can build condition definition from vocabulary as a clause body
- Treat drug use as *target concept*, and learn to predict that based on events *after* drug initiation

Use Rule Learning (ILP)

- If *antibiotics(P)* and *bleeding(P)* then *warfarin(P)*
- If *age_at_least(P,55)* and *hypertension(P)* then *vioxx(P)*

Using ML to Find Subgroups of Patients on Drug Based on Common Events Afterward

- Rule consequent specifies drug and rule antecedent specifies ADE
- Reverse of what we normally expect
- Richer condition definitions
- Can identify events that don't correspond neatly to single condition
- Can identify drug interactions


SCCS-Like Scoring of Models

- Search for events that occur more frequently after drug initiation than before
- Example scoring function:

 $P(t_{c} > t_{d} | c,d)$

• Could normalize, dividing by: $P(t_C > t_d | C,d) P(t_c > t_D | c,D)$

Temporal filtering and Scoring Functions

 $CASE_{After} - CASE_{Before}$

where now a CASE is person on drug (rather than person experiencing event)

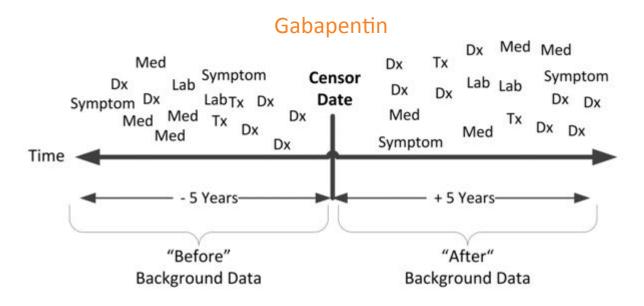
Results

Rules for Cox2(A) :-	Pos	Neg	Total	P-value
diagnoses(A,_,'790.29','Abnormal Glucose Test, Other Abn Glucose',_).	333	137	470	6.80E-20
diagnoses(A,_,'V54.89','Other Orthopedic Aftercare ',_).	403	189	592	8.59E-19
diagnoses(A,_,'V58.76','Aftcare Foll Surg Of The Genitourinary Sys',_).	287	129	416	6.58E-15
diagnoses(A,_,'V06.1','Diphtheria-Tetanus-Pertussis,Comb(Dtp)(Dtap)',_)	. 211	82	293	2.88E-14
diagnoses(A,_,'959.19','Other Injury Of Other Sites Of Trunk ',_).	212	89	301	9.86E-13
diagnoses(A,_,'959.11','Other Injury Of Chest Wall',_).	195	81	276	5.17E-12
diagnoses(A,_,'V58.75','Aftcar Foll Surg Of Teeth, Oral Cav, Dig Sys',_).	236	115	351	9.88E-11
diagnoses(A,_,'V58.72','Aftercare Following Surgery Nervous Syst, Nec',_)222	106	328	1.40E-10
diagnoses(A,_,'410','Myocardial Infarction',_).	212	100	312	2.13E-10
diagnoses(A,_,'790.21','Impaired Fasting Glucose ',_).	182	80	262	2.62E-10

Test Summary S	tatistics
----------------	-----------

Rule	+		
+	838	333	1171
-	987	1492	2479
	1825	1825	3650
v = 0.63	B		

Accuracy = 0.638 Testset Recall/Precision/F1/Dsq2best = Testset ROC_x/ROC_y/Dsq2best =

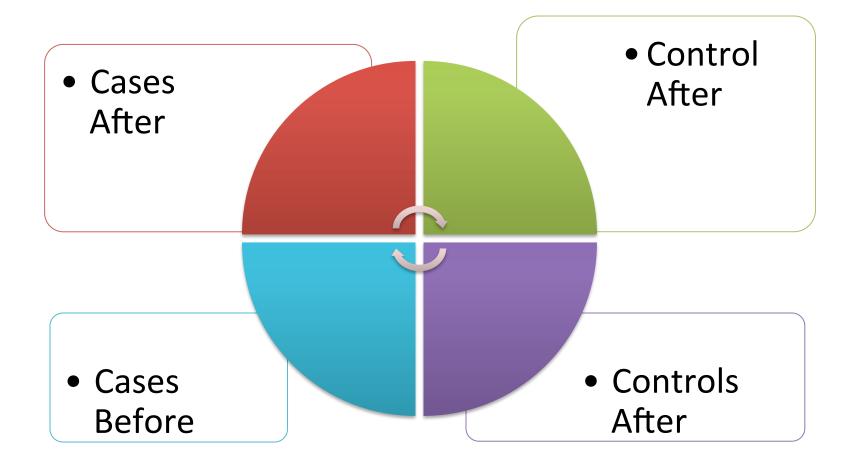

0.459 0.716 0.559 0.373 0.182 0.459 0.326

- Using only diagnoses \rightarrow Accuracy = 0.63
- Using diagnoses, medications, labs →
 Accuracy = 0.78

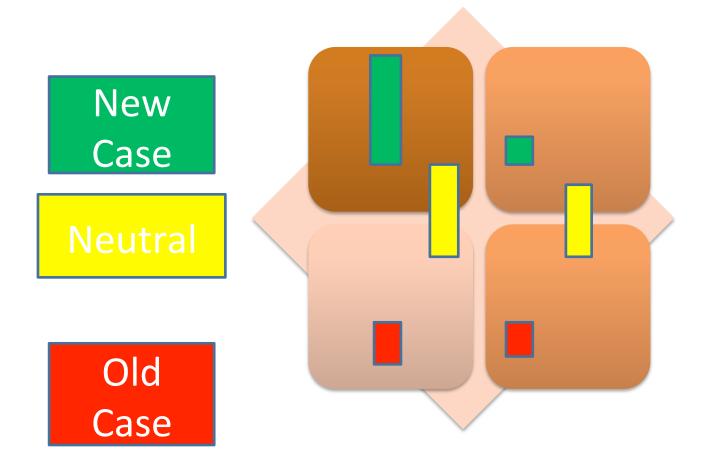
Reverse Learning for Generics

- - Can we detect who on Generic Gabapentin?
- - Each Patient is two examples
- - Confounders:
 - Most patients were switched to generic 2005
 - Marshfield policy changes also in 2005
 - Made unrelated changes to reporting system

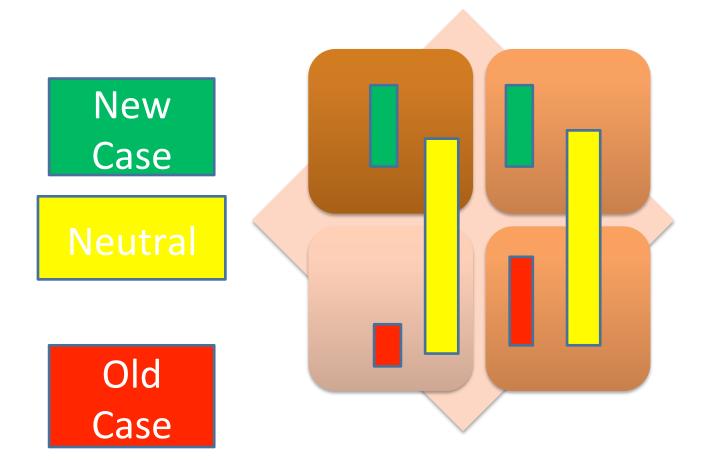
Recent Work on Generic vs. Brand Comparison

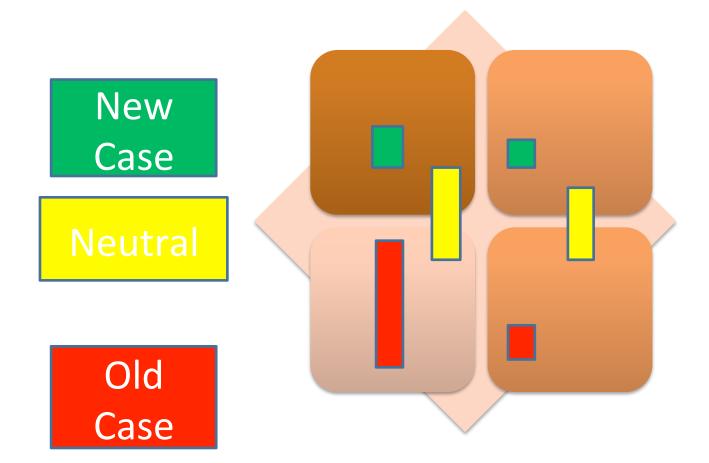

(CASE_{After} – CTRL_{After}) - (CASE_{Before} – CTRL_{Before})

where Censor Date is 2005 (time CASEs were switched from brand to generic)


Biggest Challenges Now

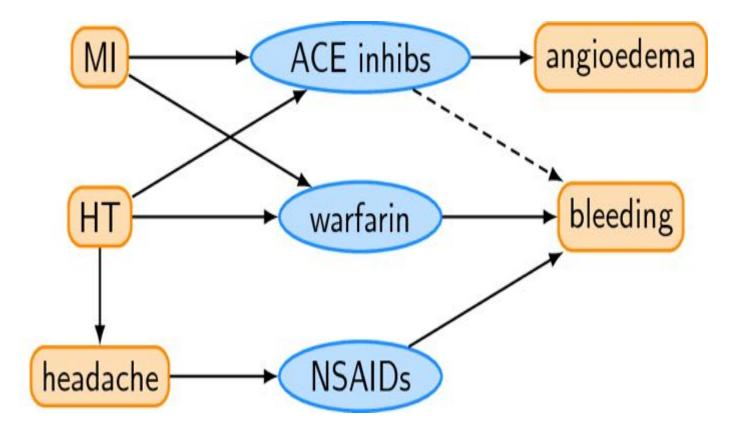
- Temporal confounding: adding controls (people not on drug) removed obvious ones
 - Prescription transmitted electronically
 - ICD code "other non-operative exam"
- But what about newer results such as hyperlipidemia, lidoderm, or levoquin?
- Evaluation: Few known cases of generic vs. brand differences for rediscovery evaluations


Cases and controls


Scoring: Informative Rule

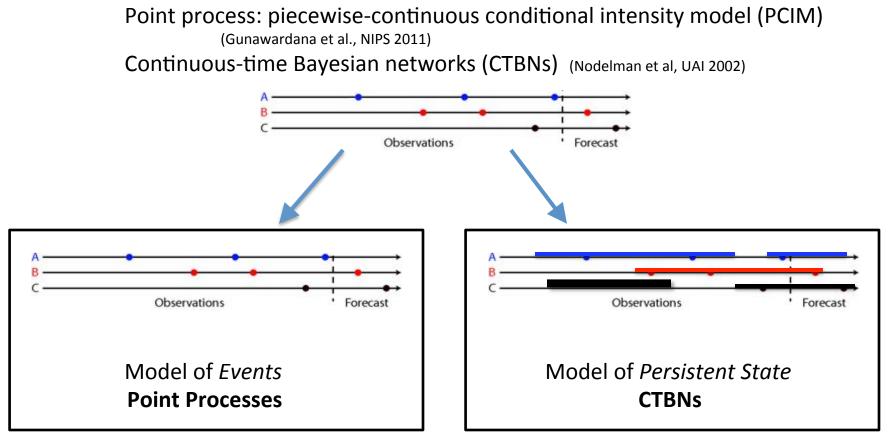
Scoring: Less Informative

Scoring: Informative?

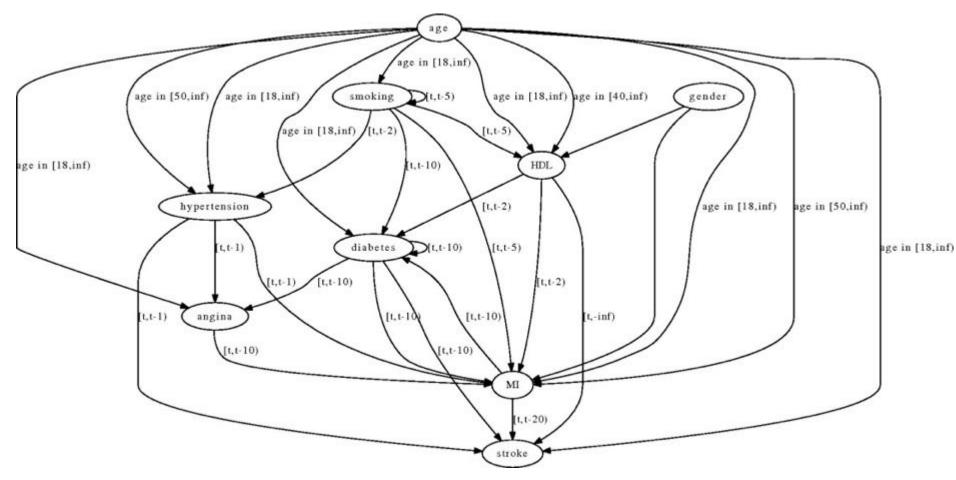

Future Work

- Further addressing confounding, temporal and otherwise
- One approach: Incorporating learned rules as nodes in a graphical model taking time into account
- Finding new ways to evaluate, such as text mining to associate with recent findings in literature

Thanks


- Peggy Peissig
- Rick Hansen
- Michael Caldwell
- Vitor Santos Costa
- Charles Kuang
- Aubrey Barnard
- Jeremy Weiss
- FDA Office of Generic Drugs
- NIGMS
- NIH BD2K Program
- NLM Training Program in Biomedical Informatics

Motivation



Continuous-time Graphical Models

Continuous-time, discrete-state, with piecewise-constant transition rates

Example CTBN or Point Process Structure

Goal: recover network-dependent event rates – measured by test set log likelihood

Conclusion

- ML has potential to bring new approaches to ADE Detection task
- Can get beyond "candidate ADE" approach, but challenges remain
 - Adjust for multiple comparisons, since we consider so many candidates
 - Temporal confounding with SCCS-like approaches can be exacerbated
 - Can we reduce this with ideas from graphical model-based approaches?