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Learning from Data

• Requirements for learning from data
• A clear question
• Knowledge about the data generating experiment
• A straightforward, relevant, interpretable result

• Core concepts in Targeted Learning
• A (statistical) model represents (statistical) knowledge about the data

generating experiment
• Target parameter defined as a feature of the data generating

distribution
• Efficient, data adaptive estimation + statistical inference

• Super Learning
• Targeted minimum loss-based estimation (TMLE)
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Traditional Approach to Analyzing Health Care Data

1 Fit several parametric logistic regression models and choose one
2 Report point estimate of coefficient in front of treatment, p-value and

confidence interval as if this parametric model was pre-specified

• But consider,
• The parametric model is misspecified
• The coefficient is interpreted as if the parametric model is correct
• The model selection procedure is not accounted for in the estimated

variance
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Targeted Learning

• Targeted Learning provides a paradigm for transforming data into
reliable, actionable knowledge

• Define targeted parameter to address a relevant scientific question,
not for convenience

• Avoid reliance on human art and unrealistic parametric models: a
priori specified estimator.

• Target the fit of data-generating distribution to the target parameter
of interest

• Valid statistical inference in terms of a normal limiting distribution
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Examples of Targeted Learning Toolbox

• Prediction and classification
• Targeted effect estimation

• Effects of static or dynamic treatments
• Direct and indirect effects (mediation analysis)
• Parameters of marginal structural models
• Variable importance measures

• Types of data
• Point treatment
• Longitudinal/Repeated Measures
• Censoring/Missingness/Time-dependent confounding
• Case-Control
• Randomized clinical trials and observational data
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Estimation Roadmap

Step 1. Define a statistical model,M, that contains the true probability
distribution

of the data, P0.
Step 2. Define the target parameter of interest, ψfull

0 , as a feature of a full
data distribution, P full

0 .
Step 3. Specify a mapping from the full data to observed data, and

Ψ : M → IRd such that under explicitly stated identifying
assumptions ψfull

0 = Ψ(P0).
Step 4. Estimation and inference of statistical parameter ψ0 = Ψ(P0)

using super learning and targeted minimum loss based estimation.
Step 5. Provide a considered interpretation of the result.
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Super Learning - Motivation

Both effect and prediction research questions are inherently estimation
questions, but they are distinct in their goals.

Effect: Interested in estimating the effect of exposure on outcome
adjusted for covariates.

Prediction: Interested in generating a function to input covariates and
predict a value for the outcome.

Effect parameters where no causal assumptions are made may be referred
to as variable importance measures (VIMs).
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Traditional Approach

Estimation using (misspecified) Parametric Models
• Data n i.i.d. copies of O = (Y ,A,W )

• Outcome Y , Treatment A, Covariates W
• Standard practice for prediction and effect estimation

• assume a parametric statistical model for E0(Y | A,W ),
the conditional mean of Y given A and W

• use maximum likelihood estimation (MLE) to estimate model
parameters

• Parametric regression models
• varying levels of complexity
• choice of variables included in model impacts complexity
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High Dimensional Data

• Potentially thousands of candidate variables to include in the model
• Model complexity can increase exponentially, more unknown

parameters than observations
• The true functional for E0(Y | A,W ) might be complex, beyond main

terms and interaction terms.
• Correct specification is a challenge
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The Complications of Human Art in Traditional Practice

• The moment we use post-hoc arbitrary criteria and human
judgment to select the parametric statistical model after looking at
the data, the analysis becomes prone to additional bias.

• Bias manifests in both the effect estimate and the assessment of
uncertainty (i.e., standard errors).

• So why not simply use a purely non-parametric model with high
dimensional data?

• p > n!
• data sparsity
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Super Learning - Motivation

• What we want is an automated algorithm to semi-parametrically
estimate E0(Y | A,W ).

• Opportunity to reduce bias due to model misspecification
• Opportunity to reduce variance by improving the fit for the dependent

variable
• Many potential algorithms.

• We cannot bet on a misspecified parametric regression,
• Many semi-parametric methods that aim to “smooth" the data and

estimate this regression function.
• Yet one particular algorithm is going to do better than the other

candidate estimators.

• How to know which one to use?
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Super Learning - Core Concepts

• Loss Based Estimation
• We will use loss functions to define the best estimator of

E0(Y | A,W ) from a library of algorithms, and then evaluate it.
• Cross Validation

• Our available data is partitioned to train and validate our estimators.
• Semi-Parametric Estimation

• Allow the data to drive your estimates, but in an honest (cross
validated) way.
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Loss-Based Estimation

• Data structure O = (W ,A,Y ) ∼ P0
• empirical distribution Pn places probability 1/n on each observed Oi ,

i = 1, . . . , n.

• Goal is to estimate conditional mean outcome, Q0 = E0(Y | A,W )
• Specify a library of learning algorithms
• “Best” algorithm is with respect to a loss function, L.

L : (O,Q)→ L(O,Q) ∈ R

• L assigns a measure of performance to a candidate function Q when
applied to an observation O.

• L is a function of the random variable O and parameter value Q.
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Loss-Based Estimation

Examples of loss functions
• L1 absolute error loss function:

L(O,Q) = |Y − Q(A,W )|,

• L2 squared error (or quadratic) loss function:

L(O,Q) = (Y − Q(A,W ))2,

• Negative log loss function:

L(O,Q) = − log(Q(A,W )Y (1− Q(A,W ))1−Y ).
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Loss-Based Estimation

• Squared error loss: L(O, Q̄) = (Y − Q̄(A,W ))2

• Expected squared error loss E0L(O, Q̄) is also known as risk
• Risk evaluates candidate Q̄

• Small risk is better
• Risk is minimized at the optimal choice of Q̄0

• Define our parameter of interest, Q̄0 = E0(Y | A,W ), as the
minimizer of the risk:

Q̄0 = arg minQ̄E0L(O, Q̄).
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Cross-Validation

Cross-validation to obtain an accurate estimate of risk
• Partitions the sample of n observations O1, . . . ,On into training and

corresponding validation sets.
• Produces an accurate estimate of risk
• Discrete super learner: selects ”best” algorithm with smallest risk

among a library of algorithms
• We can also use cross-validation to evaluate the overall performance

of the super learner itself.
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V-fold Cross-Validation

• Observed data O1, . . . ,On is referred to as the
learning set.

• Learning set is partitioned into V sets of size
≈ n

V .
• For each fold, V − 1 sets will comprise the

training set. The remaining set is the
validation set.

• Observations in the training set are used to
construct (or train) the candidate estimators.

• Observations in the validation set are used to
evaluate risk

Training 
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V-fold Cross-Validation
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The validation set rotates V times such that each set is used as the
validation set once.
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Discrete Super Learner

• Suppose a researcher cannot decide between three different statistical
methodologies for estimating E0(Y | A,W )

• SL library consists of (MLE, Deletion/Substitution/Addition (DSA),
Random Forest)

• Discrete SL chooses the one with the smallest (honest)
cross-validated risk.

Method CV-Risk
MLE 0.30
DSA 0.04
Random Forest 0.23

Which algorithm does the discrete super learner pick?
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Oracle Properties

• The Oracle selector is the best estimator among the K algorithms in
the SL library

• Chooses the algorithm whose fit on the training samples yields the
smallest risk under P0, the true probability distribution of random
variable O.

• Unknown, since it depends on both observed data and P0.
• Discrete super learner performs as well as the Oracle selector, up to a

second order term.
• assuming a bounded loss function
• number of algorithms in the library polynomial in sample size

• That is, ratio of loss-based dissimilarities for oracle selected estimator
and cross-validated selected estimator w.r.t. truth converges to 1!
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Ensemble Super Learner

• Ensemble super learner improves upon discrete super learning by
enlarging set of candidate estimators.

• Define the SL library as all weighted averages of individual algorithms
• Each weighted average is a unique candidate algorithm in this

augmented library.
• One of these weighted combinations might perform better than any

single algorithm
• Each individual algorithm remains a candidate

• Cross-validation guides the selection of the optimal weighted
combination

• Ensemble SL is no more computer intensive than discrete SL
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Ensemble Super Learner: How it works

Once the discrete super learner has been completed,
• Propose a family of weighted combinations of library algorithms,

indexed by weight vector α.
• consider only α-vectors that sum to one, where each weight is

non-negative
• Determine which combination minimizes the cross-validated risk

Pn(Y = 1 | Z ) = expit (α1,nZ1 + α2,nZ2 + . . .+ αK ,nZK )
• Cross-validated predictions (Z ) for each algorithm are inputs in a

working (statistical) model to predict the outcome Y .

• SL prediction is a weighted combination of predictions from
algorithms fit on the entire dataset. Given n× k prediction matrix Z ′,

Q̄n(A,W ) = Z′αn
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SL: Finite sample performance

Four simulated datasets (n = 100)
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Simulation 3
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Simulation 4
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Figure 2: Scatterplots of the four simulations. The solid line is the true relationship. The points
represent one of the simulated datasets of size n = 100. The dashed line is the super learner fit for
the shown dataset.
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Fig. 2, Polley and van der Laan, 2010
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SL: ICU Mortality Prediction

Cross-validated Area under the Receiver-Operating Curve

Articles

www.thelancet.com/respiratory   Vol 3   January 2015 45

For the SICULA web interface see 
http://webapps.biostat.berkeley.
edu:8080/sicula/

for constructing both the SAPS-II and APACHE-II 
scores. This algorithm was included in the Super Learner 
library so that revised fi ts of the SAPS-II score based on 
the current data also competed against other algorithms.

The data used in fi tting our prediction algorithm 
included the 17 variables used in the SAPS-II score: 
13 physiological variables (age, Glasgow Coma Scale, 
systolic blood pressure, heart rate, body temperature, 
PaO2/FiO2 ratio, urinary output, serum urea nitrogen 
concentration, white blood cell count, serum bicarbonate 
concentration, sodium concentration, potassium 
concentration, and bilirubin concentration), type of 
admission (scheduled surgical, unscheduled surgical, or 
medical), and three underlying disease variables (acquired 
immunodefi ciency syndrome, metastatic cancer, and 
haematological cancer derived from ICD-9 discharge 
codes). We produced two sets of predictions based on the 
Super Learner; the fi rst based on the 17 variables as they 
appear in the SAPS-II score (SL1), and the second, on the 
original, untransformed variables (SL2).

The SICULA prediction algorithm
We refer to the Super Learner-based prediction algorithm 
using untransformed variables (SL2) as SICULA, an 
acronym for Super ICU Learning Algorithm. An 
implementation of the SICULA in JavaScript and R has 
been made available via a user-friendly web interface. 
With this web application, clinicians and researchers can 
obtain the predicted probability of hospital mortality in 
patients in ICU based on SICULA by inputting patient 
characteristics.

External validation
An external validation of the predictive performance of the 
SICULA was done with the same metrics but an 
independent dataset. For external validation, we used data 
from 200 patients admitted to hospital between Sept 1, 
2013, and June 30, 2014. The patients were randomly 
selected (a random list of patient IDs was generated in all 
patient IDs found in our local ICU database, and 
corresponding patients were recruited into our cohort) 
from the internal anonymous database of patients from 
the medical, surgical, and trauma ICU at Hôpital 
Européen Georges Pompidou, Paris, France, a tertiary 
academic medical centre and level one trauma centre. 

Performance measures
A key objective of this study was to compare the predictive 
performance of scores based on the Super Learner with 
that of the SAPS-II and SOFA scores. This comparison 
depended on various measures of predictive performance. 
First, a mortality prediction algorithm has adequate 
discrimination if it tends to assign higher severity scores 
to patients who died in the hospital than to those who did 
not. We assessed discrimination with the cross-validated 
area under the receiver-operating characteristic curve 
(AUROC), reported with corresponding 95% confi dence 

intervals. Discrimination can be graphically shown with 
the receiver-operating curves (ROC). Additional methods 
for assessment of discrimination include boxplots of 
predicted probabilities of death for survivors and non-
survivors, and corres ponding discrimination slopes, 
defi ned as the diff erence between the mean predicted 
risks in survivors and non-survivors.

Second, a mortality prediction algorithm is adequately 
calibrated if predicted and recorded probabilities of death 
coincide well. We assessed calibration with the Cox 
calibration test.12,26,27 Because of its many shortcomings, 
including poor performance in large samples, we avoided 
the more conventional Hosmer-Lemeshow statistic.28,29 
Under perfect calibration, a prediction algorithm will 
satisfy the logistic regression equation:

Observed log-odds of death = α + β × predicted log-odds 
of death

Where α=0 and β=1. To implement the Cox calibration 
test, a logistic regression is done to estimate α and β; 
these estimates suggest the degree of deviation from 
ideal calibration. The null hypothesis (α, β)=(0,1) is tested 
formally with a U-statistic.30

Third, summary reclassifi cation measures, including 
the continuous Net Reclassifi cation Index (cNRI) and 
the Integrated Discrimination Improvement (IDI), are 
relative metrics that have been devised to overcome the 
limitations of usual discrimination and calibration 
measures.31–33 The cNRI comparing severity score A with 

Figure 1: Receiver-operating characteristics curves
SL1 with categorised variables and SL2 with non-transformed variables. 
Results were obtained with 10-fold cross-validation. We also implemented 
50-fold cross-validation and noted no material change in the estimated 
performance of the SICULA algorithm (cross-validated-AUC for the SICULA 
0·91 [95% CI 0·90–0·92]). AUROC=area under the receiver-operating 
characteristics curve. SOFA=Sepsis-related Organ Failure Assessment. 
SAPS=Simplifi ed Acute Physiology Score. APACHE=Acute Physiology and 
Chronic Health Evaluation. SL1=Super Learner 1. SL2=Super Learner 2. 
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Pirracchio, et al, Lancet, 2014

• Sepsis-related Organ Failure Assessment (SOFA)

• Simplified Acute Physiology Score (SAPS-II)

• Acute Physiology and Chronic Health Evalution
(APACHE)

• Super Learner, standard categorized variables
(SL1)

• Super Learner, non-transformed variables (SL2)

• SL better distinguishes between high and low risk patients
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The Bottom Line

• There is no point in painstakingly trying to decide what estimators to
enter in the collection; instead add them all.

• The theory supports this approach and finite sample simulations and
data analyses only confirm that it is very hard to over-fit the super
learner by augmenting the collection, but benefits are obtained.

• Indeed, for large data sets, we simply do not have enough algorithms
available to build the desired collection that would fully utilize the
power of the super learning.
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Super Learning Demonstration

• SuperLearner R package (CRAN and GitHub)
• Using the package
• Practical considerations

• Algorithms for the SL library
• Loss function
• Dimension Reduction
• How to choose V
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