Targeted Learning for Data Adaptive Causal Inference in Observational and Randomized Studies

Mark van der Laan¹ and Susan Gruber²

¹ Department of Biostatistics, University of California, Berkeley School of Public Health

² Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute

Course Outline

- Part 1
 - Targeted Learning Overview
 - Estimation Roadmap
 - Super Learning
- Part 2
 - Targeted Minimium Loss-Based Estimation (TMLE)
- Part 3
 - TMLE for longitudinal data analysis
 - Concluding Remarks

Estimation is a Science, Not an Art

- Data: Realizations of random variables with probability distribution P₀
- Statistical Model (\mathcal{M}) : Actual knowledge about the shape of P_0
- Statistical Target Parameter: A feature/function of P₀
- Estimator
 - Algorithm for mapping from data to a (*d*-dimensional) real number
 - Benchmarked by a dissimilarity measure (e.g., MSE) w.r.t. target parameter

Causal Inference

- Under non-testable assumptions P₀ can be described in terms of an underlying parameter varying over an underlying parameter space
 - e.g., intervention-specific counterfactuals
 - Parameter space described by a full data model such as a nonparametric structural equation model (NPSEM)
- Non-testable assumptions enrich the interpretation of the statistical target parameter
 - Model = Statistical Model + Untestable Assumptions
 - Allows identification of full data parameters and causal quantities
 - Definition of statistical target parameter is clear. Causal interpretation when assumptions are met
- Statistical estimation is concerned only with statistical model and statistical target parameter

Example: TMLE for the ATE parameter

Marginal additive effect of a binary point treatment (ATE) parameter

Data: n i.i.d. observations O = (Y, A, W) ~ P₀
 outcome Y, binary treatment indicator A, covariate vector W

NPSEM

$$W = f_W(U_W)$$

$$A = f_A(W, U_A)$$

$$Y = f_Y(W, A, U_Y)$$

where U_W , U_A , U_Y are uncorrelated exogenous random errors

- Target Parameter: $\psi_0^{ATE} = E_0(Y_1 Y_0)$
 - Y_a is counterfactual outcome generated under NPSEM with A set to a

A Substitution Estimator

- Target parameter ψ_0 is a feature of P_0
 - ψ can be expressed as a mapping, $\Psi(P_0)$
 - ψ is sometimes a feature of only a portion of P_0 denoted by Q_0
 - Thus, $\Psi(Q_0) = \Psi(P_0)$
- A substitution estimator applies the target parameter mapping directly to an estimate of relevent component
 - Q_n is an estimator of Q_0 that conforms to statistical model $\mathcal M$
 - Substitution estimator can be represented as mapping $\psi_n = \Psi(Q_n)$.
- Use of a substitution estimator enhances robustness by respecting bounds on both ${\cal M}$ and ψ_0

TMLE for the ATE parameter

Likelihood factorizes

$$\mathcal{L}(O) = \underbrace{\mathcal{P}(Y \mid A, W)}_{Q_Y} \underbrace{\mathcal{P}(A \mid W)}_{g} \underbrace{\mathcal{P}(W)}_{Q_W}$$

$$Q_0 = (Q_{0_Y}, Q_{0_W})$$
$$g_0 = P_0(A \mid W)$$

When causal assumptions are met

$$\psi_0 = E_{0_W}[E_0(Y \mid A = 1, W) - E_0(Y \mid A = 0, W)]$$

= $E_{0_W}[\bar{Q}_{0_Y}(1, W) - \bar{Q}_{0_Y}(0, W)]$

- Otherwise, ψ_0 remains a useful measure of variable importance

Motivation for TMLE

- Super Learner (SL) for estimating Q₀
- SL-based subsitution estimator evaluates $\psi_n^{SL} = \Psi(Q_n)$
- TMLE fluctuates initial Q_n to obtain targeted Q^{*}_n
 - Targeting makes use of information in P_0 beyond Q_0 to improve estimation of ψ_0
 - Provides an opportunity to
 - reduce asymptotic bias if initial Q_n not consistent
 - reduce finite sample bias
 - reduce variance

Pathwise Differentiable Parameter

- Pathwise derivative for a path {P(ε) : ε} ⊂ M through P at ε = 0 is defined by d/dεΨ(P(ε))|_{ε=0}
- If for all paths through P this derivative can be represented as

$$P(D^*(P)S) \equiv \int D^*(P)(o)S(o)dP(o),$$

where S is the score of the path at $\epsilon = 0$, and $D^*(P)$ is an element of tangent space at P,

then

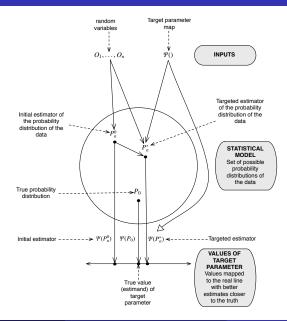
- the target parameter mapping is pathwise differentiable at P
- its canonical gradient (i.e., efficient influence curve), is $D^*(P)$

Efficient Influence Curve Equation

 An estimator is asymptotically efficient if and only if it is asymptotically linear with influence curve the efficient influence curve D^{*}(P₀):

$$\psi_n - \psi_0 = rac{1}{n} \sum D^*(P_0)(O_i) + o_P\left(rac{1}{\sqrt{n}}
ight)$$

- An efficient regular asymptotically linear estimator will need to solve the efficient influence curve equation ∑_i D^{*}(P)(O_i) = 0 (up to second order term)
- TMLE is a double robust semi-parametric efficient RAL substitution estimator that can be applied to estimate any pathwise differential parameter of P₀.



Targeted Minimum Loss-Based Estimation

- TMLE Procedure
 - Identify the "hardest" parametric submodel to fluctuate initial \hat{P} Small fluctuation \rightarrow maximum change in target
 - Identify optimal magnitude of fluctuation by MLE
 - **③** Apply optimal fluctuation to \hat{P} to obtain 1st-step TMLE
 - Repeat until incremental fluctuation is zero
 - 1-step convergence guaranteed in some important cases
 - **§** Final probability distribution solves efficient influence curve equation
 - basis for asymptotic linearity, normality, and efficiency.
 - confers double robustness, or, more general, makes bias a second order term.
- Asymptotically efficient when initial and treatment/censoring mechanism estimators are both consistent
- Allows incorporation of machine learning while preserving inference

TMLE Algorithm

• Step 1: Obtain initial estimate

$$\bar{Q}_n^0(A,W) = \hat{E}(Y \mid A,W)$$

Step 2: Target initial estimate (logit scale)

$$ar{Q}^*_n(A,W) = ar{Q}^0_n(A,W) + \hat{\epsilon}h_{g_n}(A,W)$$

- Estimate g₀(A, W) (propensity score)
- Construct parameter-specific fluctuation covariate, e..g,

$$h_{g_n}^{ATE} = \left[\frac{A}{g_n(1,W)} - \frac{1-A}{g_n(0,W)}\right]$$

- Maximum likelihood to fit ϵ
- Evaluate parameter: $\psi_n^{TMLE} = \Psi(\bar{Q}_n^*)$

Efficient Influence Curve for ATE

TMLE solves $P_n D^*(P_n^*) = 0$

Efficient influence curve for ATE parameter

$$D^*(P) = \underbrace{\left[\frac{A}{g(1,W)} - \frac{1-A}{g(0,W)}\right]\left[Y - \bar{Q}(A,W)\right]}_{a} + \underbrace{\bar{Q}(1,W) - \bar{Q}(0,W) - \psi}_{b}$$

• Stage 2 targeting fits ϵ by maximum likelihood

- MLE solves score equation $\sum_{i} h_{g_n}(A_i, W_i)[Y_i \bar{Q}_n^*(A_i, W_i)] = 0$
- We define parameter-specific h_g to ensure that the empirical mean of a equals 0.
- As a substitution estimator $\psi_n^{TMLE} = \frac{1}{n} \sum_i \bar{Q}_n^*(1, W_i) \bar{Q}_n^*(0, W_i)$, thus empirical mean of *b* equals 0.

Inference

Asymptotic Linearity

$$\sqrt{n}(\psi_n^{TMLE} - \psi_0) \stackrel{D}{\rightarrow} N(0, \sigma^2)$$

• 95% confidence intervals

$$\psi_n(Q_n^*) \pm 1.96 \,\hat{\sigma}/\sqrt{n}$$
$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \hat{D}^{*2}(P_n^*)(O_i)$$

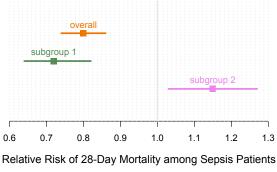
• Test statistic for null hypothesis H_0 : $\psi_0 = 0$

$$T = \frac{\psi_n}{\sqrt{\hat{\sigma}^2/n}}$$

• *p*-values are calculated as $2\Phi(-abs(T))$ $\Phi = CDF$ of standard normal distribution

Effect of Steroids on Mortality in Adults with Septic Shock

- Patient-level data from three major randomized controlled trials*
- Conflicting results among the three studies
- Using TMLE + SL to estimate RR of mortality (steroid vs. placebo)
 - Reduced variance
 - Power to estimate significant heterogeneous subgroup effects



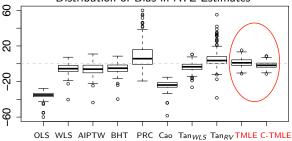
* Pirracchio, et. al. under review

2nd Seattle Symposium, October, 23, 2016

Targeted Learning

Simulation Study: ATE parameter estimation

- TMLE and C-TMLE compared with ordinary least squares and seven other double robust estimators
- Challenges: Misspecified outcome regression, correct propensity score model produces near positivity violations
- TMLE and C-TMLE were least biased and had smallest variance



Distribution of Bias in ATE Estimates

Porter, Gruber, Sekhon, and van der Laan. The International Journal of Biostatistics, 2011.

Additional topics

- Point treatment parameters
 - Relative risk, odds ratio, risk difference
 - Mean outcome under missingness in the population
 - Effect of treatment among the treated (ATT)
 - Controlled direct effects
 - Marginal structural model parameters
- Case-control and other biased sampling techniques
- Addressing common challenges in data analysis
 - Near positivity violations (poor overlap): Collaborative TMLE (C-TMLE) for data-adaptive nuisance parameter estimation
 - TMLE for bounded continuous outcomes
 - TMLE for rare outcomes

TMLE Demonstration

- tmle R package (CRAN)
- Using the package
 - Examples taken from: S. Gruber and MJ van der Laan.*tmle*: An R Package for Targeted Maximum Likelihood Estimation. Journal of Statistical Software 2012; 51(13)
- Practical Considerations
 - Setting bounds on Q
 - Truncation level for g
 - Examining results
 - Summary
 - Obtaining untargeted parameter estimates