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Data!

… and how do we actually 
influence care delivery?

   How can we learn from all available data  
in order to improve health care?
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What do statisticians need to know?

What role do statisticians play?
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Learning Health Systems

Greene et al. Implementing the Learning Health System: From Concept to Action.  Ann Intern Med. 2012;157(3):207-210. 
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Data systems to enable decision support

Statistical models to learn from health data 

Dissemination via clinical decision support 

Curation for improvement and adaptation  

Non-statistical considerations



 10

Data Systems to Enable Learning

• Electronic health record (EHR)  
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Data Systems to Enable Learning

• Electronic health record (EHR) 

• Locally managed cohort databases 

• Integration with statistical tools 

• Solutions need to be institute-wide

• Captured as part of care process, not research  
• Contain data on encounters, diagnoses, procedures, 

prescriptions, vitals, lab results, provider notes 
• Collaborate with content-area experts, EHR users 
• Informative missing data—cross-section, longitudinal 
• Research-quality requires investment, commitment 
• Potential for wonderfully big datasets
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Data Systems to Enable Learning

• Electronic health record (EHR) 

• Supplemental data sources 

• Integration with statistical tools 

• Solutions need to be institute-wide

• Registries- immunization, disease, mortality  
• Geographic, environmental data 
• Supplemental research data collection 
• Prior research studies
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Data Systems to Enable Learning

• Electronic health record (EHR) 

• Supplemental data sources 

• Clinical use, iterative process of LHS 
• Sustainable data source for continued monitoring 
• Retrospective analysis vs. real-time availability
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Statistical models to learn from health data

• Reflect sources of variability
• Reflect traditional sources of bias
• Reflect EHR-specific sources of bias
• Accommodate different sources of data
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Data systems to enable decision support 

Statistical models to learn from health data 

Dissemination via clinical decision support

Curation for improvement and adaptation  

Non-statistical considerations
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• Integration with database and prediction 
model- no manual entry of patient data

Clinical decision support tool
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• Integration with database and prediction 
model- no manual entry of patient data

• Just visualizing patient data powerful
• Graphic and text explanations
• Electronic and/or print access to tool outside 

of clinic
• Focus on outcomes of interest to patients 

and relevance to care plan

Clinical decision support tool
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PSA/Biopsy Summary

Đ ņ  PSA  Ì ņ  Typical PSA Range for Men in Active Surveillance  Č ņ  No cancer found  Đ ņ  Grade group 1 cancer found  � ņ  MRI
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Predicted Prostate Cancer Outcomes

If 100 men with a similar age, diagnosis, and PSA and biopsy
history had their prostate surgically removed today, what

cancer grade would be found?

Đ

Grade 
group 1

Đ

Grade 
group 2
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Grade 
group 3
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Grade 
group 4-5
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Predicted Prostate Cancer Outcomes

5 Years

If 100 men like you had their prostates surgically removed today, after 5
years...

WOULD BE CURED WOULD HAVE PSA
RECURRENCE

WOULD HAVE METASTIC
DISEASE

NOTE: BECAUSE OF ROUNDING TO THE NEAREST WHOLE NUMBER COUNTS MAY NOT MATCH GRADE GROUP TOTALS
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10 Years

If 100 men like you had their prostates surgically removed today, after 10
years...

WOULD BE CURED WOULD HAVE PSA
RECURRENCE

WOULD HAVE METASTIC
DISEASE

NOTE: BECAUSE OF ROUNDING TO THE NEAREST WHOLE NUMBER COUNTS MAY NOT MATCH GRADE GROUP TOTALS
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Curation for improvement and adaptation

• Monitor impact  
• Document any intervention in EHR 
• Evaluate accuracy of estimates, predictions 
• Prevent harmful feedback loops

• Accommodate impact of interventions 
• Accommodate differences in population
• Incorporating new data sources 
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Data systems to enable decision support 

Statistical models to learn from health data 

Dissemination via clinical decision support 

Curation for improvement and adaptation  

Non-statistical considerations
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• Investment, enthusiasm from clinicians 
• Patient and user stakeholders 
• Interdisciplinary team 
• Project management 
• Time and funding 
• Incentive structure 
• Institutional support  
• IRB strategy

Non-Statistical Considerations
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