

Improving Health Decisions; A Statistical Call to Arms

Scott L. Zeger (sz@jhu.edu) Professor of Biostatistics and Medicine co-Director for Data Science, Hopkins *in*Health

3rd Seattle Symposium on Health Care Data Analytics October 23, 2018

Research reported in this lecture was partially funded by a generous gift from the Greene Foundation and through a Patient-Centered Outcomes Research Institute (PCORI) Award (ME-1408-20318). The views expressed are solely the responsibility of the author and do not necessarily represent the views of the Patient-Centered Outcomes Research Institute (PCORI), its Board of Governors or Methodology Committee.

Talk Outline

- The Stew
- Short Review
- What's New
- Our View

The Stew

Per Capita Annual Medical Expenditures - OECD Countries

Smoking Attributable Costs for 60 Million Who Started Under 21 Years Old, 1954-2000

Disease: LC/COPD	43.7
(millions case-years)	
Disease: CHD Group	80.8
(millions case-years)	
Dollars	1,087
(billions)	
Deaths	128.0
(million years lost)	(13m persons)

How Big is 1 Trillion?

- 1,000,000,000,000 a million millions
- 1 trillion seconds ago was 30,000 BC
- \$1 trillion, as a stack of \$100 bills, is 630 miles high
- \$9,000 per household in the U.S.

Table. Estimates of Annual US Health Care Waste, by Category^a

	\$ in Billions					
	Annual Cost to Medicare and Medicaid in 2011 ^b			Annual Cos	t to US Health Care Sys	stem in 2011
	Low	Midpoint	High	Low	Midpoint	High
Failures of care delivery	26	36	45	102	1 28	154
Failures of care coordination	21	ad intor	matior	1/decis	sions	45
Overtreatment	67	77	87	158	192	226
Administrative complexity	16	36	56	107	248	389
Pricing failures	36	56	77	84	131	178
Fraud and abuse	30	64	98	82	177	272
Total ^c	197	300	402	558	910	1263

^a Table entries represent the range of estimates of waste in each category from sources cited in the text. The total waste estimates are simply the sums of the category-level estimates. This simple summing is feasible because the categories are defined in such a way that wasteful behaviors could be assigned to at most 1 category and because, like Pacala and Socolow,⁹ we did not attempt to estimate interactions between or among the categories.

^b Including both state and federal costs.

^c Totals may not match the sum of components due to rounding.

Figure. Proposed "Wedges" Model for US Health Care, With Theoretical Spending Reduction Targets for 6 Categories of Waste

The "wedges" model for US health care follows the approach based on the model by Pacala and Socolow.² The solid black "business as usual" line depicts a current projection of health care spending, which is estimated to grow faster than the gross domestic product (GDP), increasing the percentage of GDP spent on health care; the dashed line depicts a more sustainable level of health care spending growth that matches GDP growth, fixing the percentage of GDP spent on health care at 2011 levels. Between these lines lies the "stabilization triangle"—the reduction in national health care expenditures needed to close the gap. The 6 colored regions filling the triangle show one possible set of spending reduction targets; each region represents health care expenditures as a percentage of GDP that could be eliminated by reduction of spending in that waste category over time.

ONLINE FIRST

Eliminating Waste in US Health Care

Donald M. Berwick, MD, MPP

Andrew D. Hackbarth, MPhil

O MATTER HOW POLARIZED politics in the United States have become, nearly everyone agrees that health care costs are unsustainable. At almost 18% of the gross domestic product (GDP) in 2011, headed for 20% by 2020,¹² the nation's increasing health care expenditures reduce the resources available for other worthy government programs, erode wages, and undermine the competitiveness of US industry. Although Medicare and Medicaid are often in the limelight the health care core The need is urgent to bring US health care costs into a sustainable range for both public and private payers. Commonly, programs to contain costs use cuts, such as reductions in payment levels, benefit structures, and eligibility. A less harmful strategy would reduce waste, not value-added care. The opportunity is immense. In just 6 categories of waste—overtreatment, failures of care coordination, failures in execution of care processes, administrative complexity, pricing failures, and fraud and abuse—the sum of the lowest available estimates exceeds 20% of total health care expenditures. The actual total may be far greater. The savings potentially achievable from systematic, comprehensive, and cooperative pursuit of even a fractional reduction in waste are far higher than from more direct and blunter cuts in care and coverage. The potential economic dislocations, however, are severe and require mitigation through careful transition strategies.

JAMA. 2012;307(14):doi:10.1001/jama.2012.362

www.jama.com

Short Review

Learning Healthcare System

HealthCare System of Systems Learning

Oct 23, 2018

A Role for Biostatistics: *Healthcare Decision Support PLAY A CLINICIAN (for a moment)*

40 year old man, no family history, tests positive for a lifethreatening disease in a routine screen

What is his disease state; what action do you recommend?

	True dise			
Exam result	Yes	No	Total	
Positive	15	985	1,000	
Negative	5	8,995	9000	
Total	20	9,980	10,000	

Data from prior population of similar people

Two Goals for Biostatistics

• Create the analogue of the 2x2 table for more complex measurements

Population ⇔ Individual

• Build capacity to make tables for ever narrower sets of "otherwise similar" subgroups of individuals

Subset, Subset, Subset

What is this man's chance of having an aggressive tumor? (a) <u>1% (b) 10% (c) 50%</u> (d) 90% (e) 99%

119679	tttgaatcaa	aatttacata	gtttttcttt	tagactaagc	tcctttatga	taccagtgtg
119739	cccatttete	attaccattg	aaatgtetea	tgageatgte	acattetggt	acaactgeta
119799	atccaggatg	acagtttagt	tetttaaat	ccaattgaga	gccttctact	catgaccaga
119859	gaacctaaag	aaaggttaag	atacatttat	teettggtgt	aagtgatttg	tetatttta
119919	gttttcctaa	gggtcatatt	tcaatttaga	ttttttta	taggttaggt	aaaataggot
119979	tecctttgc	aatatgaaat	atgtagtett	ttaaaaatt	tetteaaage	tattaaactg
120039	aaaaaaatt	aatttggtet	attcagtttg	ttagcactta	ccattttgga	aagagagtga
120099	ctctactttt	gtatttggta	acattttccc	tactacaggg	cagtatettt	tgtaagttet
120159	tagatattag	caccaaataa	ataggcaaaa	aaaatctatt	atgttaatte	ttagaaceee
120219	tgottggoag	tgcatcattg	actagatgga	gaagaaatga	aaataataca	ttaggaagca
120279	gttteetggt	tetttgaaa	acaactagag	agtettgttg	ttgactggaa	tatctgaaga
120339	tcctgtttaa	tgettteatt	ctatgattgt	taagaatatg	tcatagaact	getgtateet
120399	gtttcttat	gtetteeett	ctgtttgttg	attagaaatc	cctgagtggc	tttacattat
120459	tagtacagta	gatatgtagt	atattoccat	aataccactg	otgotattga	otaatagtaa
120519	taattttagg	geagetttat	gacagttggt	ttatgtttta	gggtgtcatt	tgacttgtga
120579	agcattgaaa	tetgggtatt	aagcacactg	ttttetatgt	ggtatggaat	gattettaaa
120639	gccctgagaa	aatggaaaat	aaaaatattt	ttcctttta	ccataatcac	ctatgactgt
120699	cactctatca	taaactgcat	aaactttata	acctcaaaac	attttggaaa	tgaaatgaca
120759	gaacttgett	actcaattgc	ttotatatac	accaaatatt	tttttaaagt	attatgttaa
120819	gteettgaaa	atatttgtt	etaeteaata	gaageagttt	aggttggtag	ttetatgtgg
120879	aaaoogtgag	gaaataattt	tatattatga	tgaotagaoo	agtotttgaa	oatoaotttg
120939	gttattgttc	cattagtaaa	tattataatt	atttctgaga	tttactcacc	ttcaaagaat
120999	gttggcaatg	ccagcattat	taacactcct	ctagttagaa	caaagaggaa	atgtaataac
121059	aaaacataat	aatagccaaa	taaagagtga	cttagaatgt	acacccttat	ctaggateet
121119	gagtaatteg	attattetta	ggaaatacac	ttttgtgeta	gaacaaagac	ttttgaaata
121179	gotaatttot	gggtttottt	toattttgaa	ttaaottgaa	tttcaaggaa	acaagggtag
121239	ttttacaga	tacagtgcat	agaagetetg	tgtacaatga	agaaaagtag	gaaagtgaga
121299	aaaatgooat	tagattttc	atcgttatac	tatotgatat	gtgaatttaa	ctaaaactta
121359	tatacctcat	tatagtactt	cctaatgtaa	tttcttaatt	taagtgttcc	ccataaggtt
121419	ttttttata	taaacttaag	tactgttaaa	tatttaagge	aaattcaggt	ataaaataag
121479	acttgttgat	atottattoo	aagcatattt	gtttototoo	tatttattt	tattotgtgt
121539	tcatttccaa	aattgtttta	ctcacaactg	tttgttttt	ctgtttcatt	ctgtggtaaa
121599	ggtatcattt	ggctaattgt	ataatttcag	tgtcatttct	aatattocaa	ttgtgatagt
121659	atcaacacaa	gattaaattt	G			

 $\begin{array}{l} Bayesian\ Hierarchical\ Model\ for\\ Health\ State/Trajectory\ (\eta_{it})\ with\ Person-specific\ Indicator\ (\delta_i) \end{array}$

Effects of Exogenous (X) and Endogenous (Rx) Covariates on Health State/Trajectory with Person-specific Regression Coefficients (β_i)

Observations (Y) that Inform about Health State through Coefficients (ϕ_i)

Treatment Decisions Depend on Past Measured Outcomes through Parameters (ζ_i)

Statistical Comments

- Can be partially identifiable models that require external prior information
- Hypothesis generating models
- Aid in selecting/designing embedded RCTs
- Many call these "Causal" or "Structural Equation" Models when assumptions added
- "Predicting Intervention Effects (π) Models"

What's New (at JHM)

- *in*Health Precision Medicine Centers of Excellence (PMCOEs)
- Precision Medicine Analysis Platform (PMAP)

JHM Precision Medicine Centers of Excellence 2 => 8 => 30 => ALL

- 1. Prostate Cancer
- 2. Multiple Sclerosis
- 3. Autoimmune Disease (Scleroderma, Myositis,...)
- 4. Arrhythmia
- 5. Pancreatic Cancer
- 6. Bladder Cancer
- 7. Obesity/Diabetes JHHC Populations
- 8. Neurofibromatosis

Prostate Cancer

Bal Carter, Yates Coley, Ken Pienta, Mufaddal Mamawala, Scott Zeger, TIC, APL, IT@JH, JHTV

Steps to Make Healthcare Decisions More Nearly Coherent

Co	mponent	Prostate Cancer active surveillance example		
•	Frame unmet health need	Half of active surveillance prostatectomies yield indolent cancers		
•	Specify biomedical model	Predictors of indolence: PSA, biopsies, family history, genomic score, MRI		
•	Wrangle relevant data into a clinical cohort database (CCDB)	Brady Institute, Bal Carter Active Surveillance clinical cohort database with 1300 men; recent collection of genomes, MRIs		
•	Design and test decision support tool	Coley, et al (a, b): Bayesian hierarchical model		
•	Design and test users' interface for population health manager, clinician and/or patient	Technology Innovation Center (\$300K)		
•	Design and test on-going curation	JHM Committee		
•	Devise business model to sustain/improve tool	JHM?		
•	Scale to nation(s) through consortia	Partners		

Bouillabaisse Boole – a – Bayes

Scaling Models Across Clinics

- Biomedical, clinical and data scientist partnerships in each PMCOE
- IT infrastructure
 - Precision Medicine Analytics Platform (PMAP)
- Scalable strategies, policies, and procedures for more rapid construction of new models
 - Precision Medicine Centers of Excellence (PMCOEs) at JHM
- Business model that rewards science-based, valueproducing clinics

Our View

Johns Hopkins Healthcare (JHHC) spends ~\$2.5 Billion per year on healthcare for 500,000 members

~ \$1 Billion spent per year produces little improvement in health status

So we build statistical models that support coherent decisions that improve outcomes, reduce costs – reinvest a small part of the \$1 Billion

Forget JHHC – Think KP

Main Points Once Again

- The Stew
 - The U.S. can no longer waste \$1 Trillion per year on healthcare (and continue as a liberal democracy)
 - A large fraction of waste (1/3-1/2) is the result of uncertainty about health state, trajectory and risks/benefits of interventions that is exploited by current perverse incentives
- What's New Biostatisticians are building models that reduce uncertainty and improve decisions

Our View – just a small part of the \$1 trillion wasted be reinvested in changing the American healthcare

system

Move over Jeff; Yates in Back

References

Wu Z, Rosen L, Rosen A, **Zeger SL.** 2018. A Bayesian approach to Restricted Latent Class Models for scientifically-structured clustering of multivariate binary outcomes. bioRxiv: <u>https://www.biorxiv.org/content/early/2018/08/25/400192</u>. Submitted for publication.

Wu Z, Casciola-Rosen L, Shah A, Rosen A, **Zeger SL.** Estimating autoantibody signatures to detect autoimmune disease patient subsets. *Biostatistics*. PMID: 29140482, 2017.

Coley, RY, Fisher, AJ, Mamawala, M, Carter, HB, Pienta, KJ **and Zeger, SL.** A Bayesian hierarchical model for prediction of latent health states from multiple data sources with application to active surveillance of prostate cancer. *Biometrics*, 73: 625–634. 2017

Coley, R. Yates, **et al**. "Prediction of the Pathologic Gleason Score to Inform a Personalized Management Program for Prostate Cancer." *European Urology* (2016).

Ogburn EL, **Zeger SL**. 2016. Statistical reasoning and methods in epidemiology to promote individualized Health: in celebration of the 100th anniversary of the Johns Hopkins Bloomberg School of Public Health. *Am J Epidemiol* 183 (5): 427-434. doi: 10.1093/aje. 2016.

Wu Z, Deloria-Knoll M, **Zeger SL.** Nested, partially-latent class models for dependent binary data with application to estimating disease etiology. *Biostatistics* 18 (2), 200-213. 2016

Wu Z, Deloria-Knoll M, Hammitt LL, **Zeger SL** for the PERCH Core Team. Partially-latent class models (pLCM) for case-control studies of childhood pneumonia etiology. *Journal of the Royal Statistical Society, Series C*. 65: 97-114, 2016.

Fisher, AJ. Coley, RY and Zeger, SL. "Fast Out-of-Sample Predictions for Bayesian Hierarchical Models of Datent Health States." *arXiv preprint arXiv:1510.08802*. 2015.

Thank you