# **Biomedical Information Extraction from Semi-structured Data**

Scott Russell Halgrim Group Health Research Institute halgrim.s@ghc.org

Fei Xia Department of Linguistics University of Washington fxia@uw.edu

### Introduction • Extracting information from narrative clinical records enables many applications. • The 2009 i2b2 software development challenge was to extract medication information from discharge summaries. From hospital discharge summaries... Record #111999 TREATMENT: After observing high blood sugar, patient was given 150 cc insulin once a day for one week. DISCHARGE MEDICATIONS: Tylenol 2 tabs q.d. p.o. headache ...extract six named entities and link into entries m="insulin" || d="150 cc" || mo="nm" || f="once a day" || du="for one week" || r="high blood sugar" || In="narrative" m="tylenol" || d="two tabs" || mo="p.o." || f="q.d." || du="nm" || r="headache" ||In="list" System • The core of our system is a pipeline of statistical classifiers. Modules have access to information produced by modules earlier in the pipeline. Discharge Summary Pre-processor Statistical find name Field context\_type Detection External Data find\_others Sources Field Linking

### Features

| Group | Feature Types                                                                            |
|-------|------------------------------------------------------------------------------------------|
| F1    | Normalized n-grams                                                                       |
| F2    | Affixes, token length, shape, and other compositional features of current and nea tokens |
| F3    | Class labels of previous tokens                                                          |
| F4    | N-grams in external medications list                                                     |

Imre Solti, Eithon Cadag **Biomedical & Health Informatics** University of Washington {solti,ecadag}@uw.edu

Özlem Uzuner Information Studies College of Computing and Information University of Albany, SUNY ouzuner@uamail.albany.edu





Funded by grants 1K99LM010227-0110, 5 U54 LM008748, and U54LM008748 from the National Library of Medicine

University of Sydney University of Sydney i2b2 Community

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Resi                                    | lts   | 5 —    | Dev     | /(  | elopm        | en <sup>.</sup> | t S     | et    |    |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------|--------|---------|-----|--------------|-----------------|---------|-------|----|--|--|--|
| • H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Horizontal Exact results by feature set |       |        |         |     |              |                 |         |       |    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |       |        |         |     |              |                 |         |       |    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feature                                 | S     | Preci  | sion    |     |              | F-SC            | core    |       |    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F1                                      |       | 7      | 2.5     |     | 60.3         |                 | 65.8    |       |    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F1-F2                                   | 2     | 8      | 2.5     |     | 78.2         | (               | 80.3    |       |    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F1-F                                    | 3     | 8      | 8.4     |     | 77.9         |                 | 82.8    |       |    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F1-F4                                   | 4     | 8      | 8.1     |     | 79.4         |                 | 83.5    |       |    |  |  |  |
| <ul> <li>The difference between each row is statistically significant at p&lt;=0.01.</li> <li>The final row shows external resources help.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |       |        |         |     |              |                 |         |       |    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |       |        |         |     |              |                 |         |       |    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pipe                                    | lin   | e v    | . Si    |     | gle Cl       | as              | sifi    | er    |    |  |  |  |
| significant at p <= 0.05.<br>$s_{2,50}^{0}$<br>$s_{2,50}^{0}$<br>$r_{7,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>$r_{2,50}^{0}$<br>r |                                         |       |        |         |     |              |                 |         |       |    |  |  |  |
| System Comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |       |        |         |     |              |                 |         |       |    |  |  |  |
| Our                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | system                                  | comn  | ares f | avorah  | v · | to those wit | h mar           | יזע גער | es    |    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fyart                                   | Hnri  | 70nt   |         | - J | Inovari      |                 | ·izor   | ital  |    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Team                                    | Prec. | Recall | F-score | Γ   | Team         | Prec.           | Recall  | F-sco | re |  |  |  |
| Syd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ney                                     | .896  | .820   | .857    |     | Sydney       | .903            | .801    | .840  |    |  |  |  |
| Ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r system                                | .886  | .801   | .841    | -   | Our system   | <b>.897</b>     | .788    | .839  |    |  |  |  |
| Van<br>Mai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nchester                                | .840  | .803   | .821    | -   | NLM          | .868            | .783    | .823  |    |  |  |  |
| NL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M                                       | .784  | .823   | .803    |     | OpenU        | .858            | .762    | .807  |    |  |  |  |
| BM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E-Humboldt                              | .841  | .758   | .797    |     | BME-Humboldt | .850            | .756    | .800  |    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |       |        |         |     |              |                 |         |       |    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Conclusion                              |       |        |         |     |              |                 |         |       |    |  |  |  |
| <ul> <li>A machine learning approach compares favorably with rule.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |       |        |         |     |              |                 |         |       |    |  |  |  |

- based approaches.



## GroupHealth.





• External resources can be used to improve performance. • A pipeline of classifiers outperforms a single classifier.