David Carrell, PhD

David Carrell PhD

“My work uses computers to mine and analyze information about patients’ health from the millions of clinical notes Kaiser Permanente Washington doctors and nurses write about their patients in a typical year.”

David Carrell, PhD

Associate Investigator, Kaiser Permanente Washington Health Research Institute
Affiliate Associate Professor, Dept. of Biomedical Informatics and Medical Education, University of Washington School of Medicine

Biography

David Carrell, PhD, is an assistant investigator who develops and applies technology for extracting rich information from unstructured clinical text, such as physician progress notes. This work uses state-of-the-art clinical natural language processing (NLP) technologies in single- and multi-site settings.

An example of this work is an NLP system to identify women who have been diagnosed with recurrent breast cancer. Despite being a common and consequential clinical diagnosis, recurrent breast cancer cannot be tracked reliably using standard medical codes found in a person’s chart. Supported by a grant from the National Cancer Institute, he and his colleagues used information from clinician progress notes, radiology reports, and pathology reports to classify women by breast cancer recurrence.

Working with teams of researchers inside and outside Kaiser Permanente Washington Health Research Institute, Dr. Carrell has applied similar precision phenotyping methods to identify evidence of carotid artery stenosis, colon polyps, problem use of prescription opioids, and colonoscopy quality.

Dr. Carrell’s current research projects are applying NLP and machine learning methods to improve medication safety surveillance (through the Food and Drug Administration Sentinel Initiative) and to evaluate the impact on drug use disorder diagnosis and treatment of Kaiser Permanente Washington patients screened for unhealthy cannabis and other drug use.  His ongoing work also includes development and application of automated algorithms based on electronic health record data to identify patients with particular health conditions (called “patient phenotypes”) for use in genetic and epidemiological research.

RESEARCH INTERESTS AND EXPERIENCE

  • Medication Use & Patient Safety

    Surveillance methods for adverse events associated with medication exposure, including problem use of prescription opioids

  • Health Informatics

    Methods for using structured and unstructured electronic health record data to identify patients with (or without) specific clinical conditions or phenotypes for large scale epidemiological and genomic studies

  • Cancer and Cancer Screening

    Identifying recurrent breast cancer using EHR text; Colonoscopy quality metrics

  • Clinical Natural Language Processing

    Recurrent breast cancer; Colonoscopy quality; Extracting information from clinical text; Automated de-identification of clinical text; Methods for applying NLP methods in multi-site research

  • Addictions

    Prevention and treatment

  • Substance Use Disorders

  • Mental Health

  • Pharmacoepidemiology

     

  • Clinical Text De-identification

Recent publications

Carrell DS, Albertson-Junkans L, Ramaprasan A, Scull G, Mackwood M, Johnson E, Cronkite DJ, Baer A, Hansen K, Green CA, Hazlehurst BL, Janoff SL, Coplan PM, DeVeaugh-Geiss A, Grijalva CG, Liang C, Enger CL, Lange J, Shortreed SM, Von Korff M. Measuring problem prescription opioid use among patients receiving long-term opioid analgesic treatment: development and evaluation of an algorithm for use in EHR and claims data. J Drug Assess. 2020 Apr 28;9(1):97-105. doi: 10.1080/21556660.2020.1750419. eCollection 2020. PubMed

Schmidt AF, Holmes MV, Preiss D, Swerdlow DI, Denaxas S, Fatemifar G, Faraway R, Finan C, Valentine D, Fairhurst-Hunter Z, Hartwig FP, Horta BL, Hypponen E, Power C, Moldovan M, van Iperen E, Hovingh K, Demuth I, Norman K, Steinhagen-Thiessen E, Demuth J, Bertram L, Lill CM, Coassin S, Willeit J, Kiechl S, Willeit K, Mason D, Wright J, Morris R, Wanamethee G, Whincup P, Ben-Shlomo Y, McLachlan S, Price JF, Kivimaki M, Welch C, Sanchez-Galvez A, Marques-Vidal P, Nicolaides A, Panayiotou AG, Onland-Moret NC, van der Schouw YT, Matullo G, Fiorito G, Guarrera S, Sacerdote C, Wareham NJ, Langenberg C, Scott RA, Luan J, Bobak M, Malyutina S, Pajak A, Kubinova R, Tamosiunas A, Pikhart H, Grarup N, Pedersen O, Hansen T, Linneberg A, Jess T, Cooper J, Humphries SE, Brilliant M, Kitchner T, Hakonarson H, Carrell DS, McCarty CA, Lester KH, Larson EB, Crosslin DR, de Andrade M, Roden DM, Denny JC, Carty C, Hancock S, Attia J, Holliday E, Scott R, Schofield P, O'Donnell M, Yusuf S, Chong M, Pare G, van der Harst P, Said MA, Eppinga RN, Verweij N, Snieder H; Lifelines Cohort authors, Christen T, Mook-Kanamori DO; ICBP Consortium, Gustafsson S, Lind L, Ingelsson E, Pazoki R, Franco O, Hofman A, Uitterlinden A, Dehghan A, Teumer A, Baumeister S, Dörr M, Lerch MM, Völker U, Völzke H, Ward J, Pell JP, Meade T, Christophersen IE, Maitland-van der Zee AH, Baranova EV, Young R, Ford I, Campbell A, Padmanabhan S, Bots ML, Grobbee DE, Froguel P, Thuillier D, Roussel R, Bonnefond A, Cariou B, Smart M, Bao Y, Kumari M, Mahajan A, Hopewell JC, Seshadri S; METASTROKE Consortium of the ISGC, Dale C, Costa RPE, Ridker PM, Chasman DI, Reiner AP, Ritchie MD, Lange LA, Cornish AJ, Dobbins SE, Hemminki K, Kinnersley B, Sanson M, Labreche K, Simon M, Bondy M, Law P, Speedy H, Allan J, Li N, Went M, Weinhold N, Morgan G, Sonneveld P, Nilsson B, Goldschmidt H, Sud A, Engert A, Hansson M, Hemingway H, Asselbergs FW, Patel RS, Keating BJ, Sattar N, Houlston R, Casas JP, Hingorani AD. Phenome-wide association analysis of LDL-cholesterol lowering genetic variants in PCSK9. BMC Cardiovasc Disord. 2019 Oct 29;19(1):240. doi: 10.1186/s12872-019-1187-z. PubMed

Shang N, Liu C, Rasmussen LV, Ta CN, Caroll RJ, Benoit B, Lingren T, Dikilitas O, Mentch FD, Carrell DS, Wei WQ, Luo Y, Gainer VS, Kullo IJ, Pacheco JA, Hakonarson H, Walunas TL, Denny JC, Wiley K, Murphy SN, Hripcsak G, Weng C. Making work visible for electronic phenotype implementation: lessons learned from the eMERGE network.  J Biomed Inform. 2019 Sep 19:103293. doi: 10.1016/j.jbi.2019.103293. [Epub ahead of print]. PubMed

Gordon AS, Rosenthal EA, Carrell DS, Amendola LM, Dorschner MO, Scrol A, Stanaway IB, DeVange S, Ralston JD, Zouk H, Rehm HL, Larson E, Crosslin DR, Leppig KA, Jarvik GP. Rates of actionable genetic findings in individuals with colorectal cancer or polyps ascertained from a community medical setting. Am J Hum Genet. 2019 Sep 5;105(3):526-533. doi: 10.1016/j.ajhg.2019.07.012. Epub 2019 Aug 15. PubMed

Carrell DS, Cronkite DJ, Li MR, Nyemba S, Malin BA, Aberdeen JS, Hirschman L. The machine giveth and the machine taketh away: a parrot attack on clinical text deidentified with hiding in plain sight. J Am Med Inform Assoc. 2019 Dec 1;26(12):1536-1544. doi: 10.1093/jamia/ocz114. PubMed

Namjou B, Lingren T, Huang Y, Parameswaran S, Cobb BL, Stanaway IB, Connolly JJ, Mentch FD, Benoit B, Niu X, Wei WQ, Carroll RJ, Pacheco JA, Harley ITW, Divanovic S, Carrell DS, Larson EB, Carey DJ, Verma S, Ritchie MD, Gharavi AG, Murphy S, Williams MS, Crosslin DR, Jarvik GP, Kullo IJ, Hakonarson H, Li R; eMERGE Network, Xanthakos SA, Harley JB. GWAS and enrichment analyses of non-alcoholic fatty liver disease identify new trait-associated genes and pathways across eMERGE Network. BMC Med. 2019 Jul 17;17(1):135. doi: 10.1186/s12916-019-1364-z. PubMed

Hripcsak G, Shang N, Peissig PL, Rasmussen LV, Liu C, Benoit B, Carroll RJ, Carrell DS, Denny JC, Dikilitas O, Gainer VS, Marie Howell K, Klann JG, Kullo IJ, Lingren T, Mentch FD, Murphy SN, Natarajan K, Pacheco JA, Wei WQ, Wiley K, Weng C. Facilitating phenotype transfer using a common data model. J Biomed Inform. 2019 Jul 17:103253. doi: 10.1016/j.jbi.2019.103253. [Epub ahead of print]. PubMed

 

Research

Mental-Health-Awareness-Month-2023_1col.jpg

Improving and advancing mental health care

KPWHRI researchers are contributing to better mental health care for people nationwide.

New findings

NLP_Natural-Language-Processing_1col.jpg

Research roundup on natural language processing and machine learning

Using doctor's notes to learn about drug reactions, dementia, and cannabis use.

Vaccine Safety

About-Us-Capabilities_Jennifer-Nelson_1col.jpg

Biostatisticians track COVID-19 vaccine safety

Dr. Jennifer Nelson explains how KP scientists are helping the CDC and FDA keep an eye out for rare adverse events.

cancer research

SusanKarenDianneMary-1col.jpg

Using breast MRI after cancer may lead to unneeded biopsies

A Kaiser Permanente-led BCSC study is among the largest ever to evaluate adding MRI surveillance for breast cancer survivors.